くだらねぇ問題はここへ書け (836レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

661
(3): 2024/02/24(土)16:31 ID:8e2wHLHp(1/6) AAS
[第1段]:2^{√2} が代数的数であるとする
a=2^{√2} とおく
仮定から、aは実数であって、aは実数の代数的数である
a=2^{√2} とおいているから log_|a|=√2×log|2| である
よって a=2^{√2} から 2^{√2}=e^{√2×log|2|} が成り立つ
[第2段]:ところで、1<√2<3/2 だから 2^{√2}<2^{3/2} である
また e>2 から log|2|<1 であって、4/3<√2<3/2 だから
log|2|<4/3<√2×log|2|<3/2×log|2| から e^{√2×log|2|}>e^{4/3} である
よって、2^{√2}>e^{4/3} を得る
[第3段]:故に、log_2|e^{4/3}|<√2 から log_2|e|<3/4×√2 であって、
省9
663
(3): 2024/02/24(土)18:03 ID:8e2wHLHp(2/6) AAS
[第3段]:故に、log_2|e^{4/3}|<√2 から log_2|e|<3/4×√2 であって、
e<2^{3/4×√2} から 1<3/4×√2×log|2|、即ち e^{(2√2)/3}<2 である
よって、e^{2√2}<8 を得る
[第4段]:しかし、e^{√2}>8^{1/2}=2√2 だから e^{2√2}>8 である
故に、e^{2√2}<8 が得られたことは e^{2√2}>8 なることに反し、矛盾する
この矛盾は 2^{√2} が超越数ではないとしたことから生じたから、
背理法により 2^{√2} は超越数である
664
(1): 2024/02/24(土)18:04 ID:8e2wHLHp(3/6) AAS
>>662
間違えたところは訂正した
666
(1): 2024/02/24(土)18:35 ID:8e2wHLHp(4/6) AAS
>>665
>代数的数を超越数に書き換えれば超越数ではない「証明」になる
ゲルフォント・シュナイダーの定理から、そうはならない
667: 2024/02/24(土)18:49 ID:8e2wHLHp(5/6) AAS
体Q上 a=2^√2 のn次の最小多項式を考えても、
その次数が1であることは明らかだから、
結局はaの無理性の証明に帰着する
669
(1): 2024/02/24(土)19:20 ID:8e2wHLHp(6/6) AAS
>>668
ゲルフォント・シュナイダーの定理に従えば、そうはならないという事実がある
2^√2 の無理性の証明を高校数学の範囲で証明してもつまらない
2^√2 を互いに素な整数を使って有理数で表して議論していって矛盾を導く可能性が高い
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.464s*