[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
223(3): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)22:44 ID:fEMhvHu0(3/23) AAS
>>222 つづき
以上のをまとめると,以下の「事象の公理」になる.今までは故意にΩ が有限集合の場合を考えてきたが,
Ω が無限の時には以下のように考える.
定義1.1.3 (事象の公理=可測空間,無限でもいけるバージョン) Sample Space Ω が与えられたとき,Ω の事象
の集まりとは,以下を満たすΩ の部分集合の集まり(部分集合族)F のことである.
1. F ∋ Φ
2. E ∈ F ならばE^c ∈ F
3. E1,E2,E3, . . . ∈ F に対し,∪{i=1~∞}Ei ∈ F
・F はΩ のσ-field と呼ばれる.
・このバージョンになると,もはや「Ω の全ての部分集合を事象と認める」とは言っていない事に注意.事象
省17
88(3): 現代数学の系譜 古典ガロア理論を読む 2017/06/21(水)21:21 ID:jkQw9XXq(4/5) AAS
>>87 つづき
追伸
現代数学の標準的な自然数の構成法を、前スレでも紹介したので、下記引用します。
2chスレ:math
251 返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/06/07(水) 07:30:20.38 ID:qnt5rUPR [3/25]
(抜粋)
下記引用ご参照。現代数学の標準的な自然数の構成法だ
何を言いたいかと言えば、「任意の自然数 a にはその後者 (successor) の自然数 suc(a) が存在する」を繰り返すことによって、”可算無限個の”自然数を構成しているんだ!!
だから、有限モデルから>>223の有限モデルから、一つずつ箱を増やして、”可算無限個の”箱のモデルに到達することは、なんらの問題もないってこと
これが、現代数学の標準的な自然数の構成法だと
省19
224(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)22:45 ID:fEMhvHu0(4/23) AAS
>>223 つづき
標本空間が無限の場合は大抵の根元事象の確率はゼロであり(でなければ確率の和
が1 にならない!),根元事象から出発することはできない.そのために,(根元事象から出発しない)抽象的な確
率の性質を公理としてまとめておく.
定義1.2.1 (確率の公理,有限バージョン) 有限な標本空間Ω が与えられたとき,Ω 上の確率(または確率測度)
とは,以下を満たすΩ 上の関数P のこと:すなわち,Ω の部分集合E のそれぞれについて関数の値P[E] が定ま
り,かつ
1. 全てのE ⊂ Ω に対して0 ? P[E] ? 1.
2. P(Ω) = 1
3. E1,E2,E3, . . . ⊂ F がmutually exclusive,つまり「i not= j ならばEi ∩ Ej = Φ」,のとき,
省11
235(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)23:05 ID:fEMhvHu0(15/23) AAS
>>203
どうも。スレ主です。
思うに、順序数 ω を使うと、標準的な測度論の範囲外だと思う
>>222-227 で引用したテキストのσ-加法性と合わないように思います
>Lebesgue 積分論のp.21
> 外部リンク[pdf]:www.ma.noda.tus.ac.jp
ああ、そうですね。順序数ωが登場しますが、「定理6.3 で用いた♯Bn = N(アレフ) の証明」のところ、
即ち、P21の[♯Bn = N(アレフ) の証明]の上2行のみですね。
それは、私の認識と同じですよ。(=基礎論で登場するのみ)
対して、極限と∞は、テキスト全部に渡って出現しますよ
省9
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.863s*