[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
417
(2): 2017/08/09(水)08:03 ID:A2I5YGTu(1/10) AAS
いつもと違う出題形式。 いろんな解法を考えていて、おかしくなったでござる。

『実数 a, b>0 が ab ≧ a+b+1 をみたすとき、ab の最小値を求めよ。』
について、以下の解法(a)、(b)、(c)を考える。
(a)、(b)のどこがおかしいのか?

(a)
ab ≧ a+b+1 ≧ 3*(a*b*1)^(1/3)、等号はa=b=1 かつab=a+b+1
∴ (ab)^3 ≧ 27ab
ab>0で割って、(ab)^2 ≧ 27
ab>0だから、ab ≧ 3√3
等号成立条件をみたすa, bがないから、ab > 3√3

(b)
ab ≧ a+b+1 ≧ 2√(ab) + 1、等号はa=b かつab=a+b+1
∴ab-1 ≧ 2√(ab)
∴(ab-1)^2 ≧ 4ab
∴(ab)^2 - 6ab - 1 ≧ 0
ab>0だから、0 < ab ≦3-2√2 または 3+2√2 ≦ab

(c)
a+b ≧ 2√(ab) ≧ 2√(a+b+1)、等号はa=b かつ ab=a+b+1
∴ (a+b)^2 ≧4(a+b+1)
∴ (a+b)^2 - 4(a+b) - 4 ≧0
∴ a+b>0 だから、a+b ≧ 2+2√2
∴ ab ≧ a+b+1 ≧ 3+2√2
abの最小値は、3+2√2 (a=b=1+√2)
1-
あと 585 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.008s