[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
44: ¥ ◆2VB8wsVUoo 2017/06/29(木)13:26 ID:0RPSduFk(12/12) AAS
¥
45: 2017/06/29(木)14:31 ID:6Aq4M2nP(1) AAS
わざわざほかのスレに貼るのやめろよ
46: 2017/06/29(木)17:22 ID:VBt2ub+o(1) AAS
うむ、他スレで見かけた不等式を収集するのは別だが。
47(6): 2017/06/30(金)18:19 ID:g/dkToLH(1/2) AAS
>>42
左辺が pp+pq+qq の形になるのは、アイゼンシュタイン整数Z[ω]のノルムみたいなもの?
ナゴヤ△と関係あるの賀茂鴨
48(4): 2017/06/30(金)18:39 ID:g/dkToLH(2/2) AAS
>>47
z1 = a - cω,
z2 = d - bω (a〜d∈Z)
をアイゼンシュタイン整数とすると、
z1・z2 = (ad-bc) - (ab+bc+cd)ω,
49(3): 2017/07/04(火)01:40 ID:Wi3Yphfr(1) AAS
>>47
ナゴヤ△ = ノルムが平方数であるアイゼンシュタイン整数
50(2): 2017/07/06(木)11:31 ID:TXO3PlHQ(1) AAS
>>47-49
ナゴヤ△は、乗法について閉じている。
51(1): 2017/07/06(木)20:49 ID:nv6IrYms(1) AAS
実数 x,y,z が x^2 + y^2 + z^2 =1 をみたすとき、
(x-y)(y-z)(z-x)、(2x-y)(2y-z)(2z-x) の最大値を求めよ。
52(1): 2017/07/07(金)01:47 ID:aKMbWmCY(1) AAS
>>51
右:
y は x、z の中間にある、とする。
y を x、z の中間で動かすとき、
|x-y| |y-z| ≦ (1/4)|z-x|^2,
∴y=(x+z)/2(等間隔)のとき最大で
(与式)≦(1/4)|z-x|^3 ≦ 1/√2,
等号成立は(x,y,z)=(±1/√2, 0, 干1/√2)
53(1): 2017/07/07(金)16:59 ID:A1/MZg5M(1) AAS
B.4599
Solve the equation (sin x)^5 + (cos x)^5 + (sin x)^4 = 2.
外部リンク[cgi]:www.komal.hu
この問題を過去スレで改造手術してなかったっけ? うまく見つけられなかった。
-1 ≦ (sin x)^5 + (cos x)^5 + (sin x)^4 ≦ 2
いい証明方法ない蟹?
54(1): 2017/07/08(土)03:52 ID:E7CWjLAg(1/4) AAS
>>53
sin(x) + cos(x) = y とおく。
1 - sin(x)^5 - cos(x)^5
= (1/2) {1-sin(x)} {1-cos(x)} F(sin(x)+cos(x))
= (1/4) (1-y)^2 F(y)
≧0,
F(y) = 4+3y+2yy+y^3 ≧ 8 - 5√2 > 0,
1 + sin(x)^5 + cos(x)^5
= (1/2) {1+sin(x)} {1+cos(x)} F(sin(x)+cos(x))
= (1/4) (1+y)^2 F(-y),
省3
55: 2017/07/08(土)12:59 ID:E7CWjLAg(2/4) AAS
>>54
補足
F(y) = F(-√2) + (√2 +y) {2 + (1 -(1/√2) +y)^2}
≧ F(-√2)
= 8 -5√2,
訂正
1 + sin(x)^5 + cos(x)^5
= (1/2) {1+sin(x)} {1+cos(x)} F(−sin(x)−cos(x))
= (1/4) (1+y)^2 F(-y),
≧ 0,
56: 2017/07/08(土)13:38 ID:E7CWjLAg(3/4) AAS
>>47-50
7 =|5+8ω|=|5ω+8| … ナゴヤ
ただし、1+ω+ω^2 =0.
>>52
(x,y,z) は単位球面上の点。
x,zを止めてyだけ動かすのは無理
57: 2017/07/08(土)18:05 ID:E7CWjLAg(4/4) AAS
>>47-50
|a - bω| = c,
aa+ab+bb = cc,
とする。
ピタゴラス数との類推により
a = mm-nn,
b = (2m+n)n,
c = mm+mn+nn,
と表わせる。
外部リンク[htm]:www.geocities.jp
省2
58: 2017/07/09(日)17:40 ID:hraGPmBR(1) AAS
〔Golden-Thompsonの不等式〕
A、Bがエルミート行列のとき、
tr{exp(A+B)}≦ tr{exp(A)exp(B)}
S.Golden(1965)、C.J.Thompson(1965)
数セミ増刊「数学の問題 第(2)集」日本評論社(1978)No.96
No.96
59: 2017/07/10(月)03:41 ID:pArAdsTp(1) AAS
>>956 (3)
{Σ[n=1〜∞] (x/n)^n}^(1/x)≒ e^(1/e + 4/x + …)
Lim[x→∞]{Σ[n=1〜∞] (x/n)^n}^(1/x)= e^(1/e)= 1.444667861
60(1): 2017/07/12(水)23:08 ID:4DpnFpJn(1) AAS
AA省
61(1): 2017/07/13(木)00:13 ID:aYclV8OY(1/9) AAS
Ono Inequality
外部リンク[html]:mathworld.wolfram.com
62(2): 2017/07/13(木)00:58 ID:oVTfqBd/(1/6) AAS
>>60
外部リンク:ja.wikipedia.orgピコーンの等式
>>61
外部リンク:ja.wikipedia.orgオノの不等式
63(1): 2017/07/13(木)01:04 ID:aYclV8OY(2/9) AAS
>>62
オノの不等式
> 1914年に T.オノはこの式が任意の三角形について成り立つと予想したが、
> 1916年に Balitrand によって予想が誤りであることと、鋭角三角形であればこの式が成り立つことが示された。
T.オノって何者だ?
上下前次1-新書関写板覧索設栞歴
あと 939 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.016s