[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
81: 2017/07/14(金)13:02:23.89 ID:54s0BI7v(5/6) AAS
>>69
[第5章.667]
a+b+c+d = s,ab+ac+ad+bc+bd+cd = t,abc+abd+acd+bcd = u とおく。
2tt - (9/2)su =(ab-cd)^2 + (ac-bd)^2 + (ad-bc)^2 + (1/4)(aa+bb)(c-d)^2 + … ≧ 0,
2st - 12u =(a+b)(c-d)^2 + (a+c)(b-d)^2 + … + (c+d)(a-b)^2 ≧ 0,
∴ 2t^3 ≧ 27uu,
232(2): 2017/07/22(土)15:48:14.89 ID:G0nvuSlz(1/2) AAS
>>230
(解1)
a+b+c=s とおく。
f(X) = X/√(s-X)= s/√(s-X) - √(s-X)
は下に凸ゆえ Jensen で
f(a)+ f(b)+ f(c)≧ 3f(s/3)= √(3s/2),
(解2)
x=b+c, y=c+a, z=a+b とおく。
a/√(b+c)=(y+z-x)/(2√x)≧{2√(yz) -x}/(2√x),
したがって、
省10
236: 2017/07/23(日)10:08:15.89 ID:yTyAIG7a(1/3) AAS
>>225 >>233
参考のため残しておきまつ。
(a+b+c)^5 -(ab+bc+ca){27(1+K)(aab+bbc+cca)- 81K・abc}における
A^3 の係数:
(1-3K)(yy-yz+zz),
A^2 の係数:
(4-6K)yyy -(6+9K)yyz + 3yzz +(4-6K),
A^1 の係数:
5y^4 -(7+27K)y^3・z -(6+9K)yyzz + (11-9K)yz^3 + 5z^4,
省5
291: ¥ ◆2VB8wsVUoo 2017/07/28(金)18:55:46.89 ID:tqhSG1tp(15/23) AAS
¥
539(3): 2017/08/11(金)12:57:10.89 ID:OXujv9yn(1/2) AAS
>>467 (1)を改造...
三角形の辺長を a,b,c、面積をSとするとき、(1/3)(a+b+c)^2 ≧ (4√3)S.
(証明3)
b+c-a=A, c+a-b=B, a+b-c=C とおく。
(1/3)(a+b+c)^2
=(1/3)(A+B+C)^2
≧ √{3(A+B+C)ABC} (← AM-GM)
=(4√3)S,
三角形の辺長を a,b,c、面積をSとするとき、ab+bc+ca ≧ (4√3)S.
(証明6)
省6
558: ¥ ◆2VB8wsVUoo 2017/08/11(金)19:52:21.89 ID:ToUPXODc(25/33) AAS
¥
578: ¥ ◆2VB8wsVUoo 2017/08/12(土)02:23:15.89 ID:Ay3s6hqd(10/10) AAS
¥
671: 2017/08/21(月)22:26:23.89 ID:QiJqP8rB(3/3) AAS
>>669
>>670 の訂正
(2) aab + aab + bbc ≧ 3abG
でござった。
(3) 非対称のときは微妙な場合もあるが、この場合は成立つでござる。
708(2): 2017/08/27(日)16:26:59.89 ID:NetfQ0ow(7/8) AAS
>>388 (5) >>450
〔Hlawkaの不等式〕を拡張…
r≧1 のとき
K(r){|a|^r +|b|^r +|c|^r +|a+b+c|^r}≧|a+b|^r +|b+c|^r +|c+a|^r,
ここに K(r)は
1≦r≦2 のとき、K(r)=(2^r)/{1+3^(r-1)},
2≦r のとき、K(r)= 2^(r-2),
kurims 講究録-1136-11 p.90-95 (2000) Theorem 2
>>449 (2)
佐藤(訳):文献[9]、演習問題1.43、問題3.67
省7
802: ¥ ◆2VB8wsVUoo 2017/09/02(土)02:20:49.89 ID:z17/uuYO(5/30) AAS
¥
897(1): 2017/09/06(水)06:00:26.89 ID:AYr/rfmQ(1/2) AAS
>>848 >>870 >>871
(aa+bb+cc)^(3/2)={(ss + 2F_0)/3}^(3/2)
≧ √(ss/3)(ss/3 + F_0) (← AM-GM)
= (4sss -9st)/(3√3)
≧(7st -36u)/(3√3) (← F_1=sss-4st+9u≧0)
≧(3√3)(st -5u)/4 (← st-9u≧0)
= (3√3){(ab^3+bc^3+ca^3)+(a^3b+b^3c+c^3a)+ 2[(ab)^2+(bc)^2+(ca)^2]}/(4s)
≧(3√3){(ab)^2+(bc)^2+(ca)^2)}/s, (← AM-GM)
を示した方が簡単なおもしろい不等式…
916: ¥ ◆2VB8wsVUoo 2017/09/06(水)13:23:10.89 ID:nJ0wcqLn(14/20) AAS
¥
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s