[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
711: 2021/02/19(金)10:38 ID:J7Kqz6z/(2/2) AAS
半群にStone-Cechコンパクト化を施すと、どういうわけかラムゼー理論と相性がよく、
ラムゼー理論の色々な定理がめちゃくちゃ簡単に証明できてしまい、
さらには既存の定理の拡張でさえも同じ方法で示せてしまう。
しかも、そのようにして得られた定理の大半は、初等的な証明が知られていない。
また、初等的に示せる場合でも、その証明は複雑怪奇で、とても読めたものではない。
それが、Stone-Cechコンパクト化を経由すると(定理の拡張も含めて)簡単に証明できてしまう。
ここまでくると、「この分野はこのやり方が正解」と言わざるを得ない。
ところで、Stone-Cechコンパクト化には普通は選択公理が必要で、
特にラムゼー理論に応用するときには選択公理が避けて通れない。
つまり、選択公理を経由することでラムゼー理論の色々な定理が
(その拡張も含めて)簡単に証明でき、しかもその大半には
初等的な証明が知られていないという状況になっている。
この分野は選択公理を経由するのが正解なのだ。
皮肉だよな。組み合わせ論という、構成的数学の権化みたいな分野で
まさかの選択公理だぜ。
上下前次1-新書関写板覧索設栞歴
あと 291 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.009s