[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
312
(1): 2021/02/09(火)11:02 ID:iaSZi6N5(1/5) AAS
>>303
追加

これ面白い
外部リンク[html]:www.kurims.kyoto-u.ac.jp
望月 出張・講演
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
[10] 数論的log schemeの圏論的表示から見た楕円曲線の数論 (北海道大学 2003年11月). PDF

このPDFは手書きだが、IUキカとABCの関係について、その構想・着想を説いているので興味深い
読むのは、暗号解読みたいだが、面白い
なお、文中の”キカ”=幾何ということは、分かった
省14
314
(4): 2021/02/09(火)11:27 ID:iaSZi6N5(2/5) AAS
>>311

ありがと
分かったよ
楕円曲線は、下記(梅村にも書いてあるが)、複素トーラス面(リーマン面)で、下記「種数 1 の閉曲面(英語版)(コンパクト二次元多様体)」
典型的には、車のゴムタイヤだ

で、「一点抜き楕円曲線」(>>307)は、穴あきタイヤだね
で、それは”閉”曲面(3次元空間を内外に分ける)ではなく、”開”(3次元空間を内外に分けない)曲面になるってこと

コンパクトではないけれが、それよりも(3次元空間の)開か閉かの問題だね
そして、穴あきタイヤは、下記の「アニュラス」に類似だ。ただ、内円が外円のどちらかの縁が、閉じられていない(縁が無い)ってことだね

(参考)
省4
315: 2021/02/09(火)11:27 ID:iaSZi6N5(3/5) AAS
>>314
つづき

外部リンク:ja.wikipedia.org
トーラス

初等幾何学におけるトーラス(英: torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。

いくつかの文脈では、二つの単位円周の直積集合 S1 × S1(に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた S1 × S1 に同相な図形の総称として用いられ、種数 1 の閉曲面(英語版)(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 R3 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 R2 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは R3 では不可能で、R4 で考える必要がある。これはクリフォードトーラス(英語版) と呼ばれる、四次元空間内の曲面を成す。

混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。
省5
316: 2021/02/09(火)11:30 ID:iaSZi6N5(4/5) AAS
>>314
タイポ訂正

コンパクトではないけれが、それよりも(3次元空間の)開か閉かの問題だね
 ↓
コンパクトではないが、それよりも(3次元空間の)開か閉かの問題だね
317: 2021/02/09(火)11:34 ID:iaSZi6N5(5/5) AAS
>>310
>こんなに長い間放置されたということは、たいして重要な問題では無いということだろうね。
>本当に重要な問題ならば、天才たちが本気で参入してきて、もうとっくにケリがついているはずだから。

まあ、そういう解釈も可能だが
もう一つ、多くの天才たちが本気で参入してきて、10年近く経って、ようやく理解され始めた大理論だったと
そういう解釈も可能だろう

果たしてどちらか
今年分かってくる
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.066s*