[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
527
(6): 2022/04/23(土)20:45 ID:MU2asfqc(11/24) AAS
>>495 追加
>宇宙際Teichmuller理論
>[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF   NEW !! (2020-12-23)
>外部リンク[pdf]:www.kurims.kyoto-u.ac.jp

<”宇宙”について>
これ、望月氏の 宇宙 ”relationships between universes”の説明が、下記にあるけど
結構独特で、世間的には、ちょっとズレている気がする。「複数の宇宙の使用は、1960年代の数学」(下記)とかね
一方、(後述の)ちょうど1960年代に、数学基礎論で強制法が考えられて、「強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大する」(下記)みたいな話がある
だから、数学基礎論の強制法を知っている人(あるいは、いまどき ”universe”の数学的意味を検索した人)は、IUTの”Inter-universal”という語法に違和感を感じる気がする
代数系なり代数幾何にしろ、集合論や圏論としても、せいぜい集合と類までで収まるはず。(圏論でも、”局所的に小さい (locally small) ”で収まるはず)”宇宙”は、普通は出てこない
省1
528
(1): 2022/04/23(土)20:46 ID:MU2asfqc(12/24) AAS
>>527
つづき

<下記に対訳を作ってみた>
<原文>
P27
§ 2.10. Inter-universality: changes of universe as changes of coordinates
One fundamental aspect of the links [cf. the discussion of §2.7, (i)] ? namely, the Θ-link and log-link ? that occur in inter-universal Teichm¨uller theory is their incompatibility with the ring structures of the rings and schemes that appear in their domains and codomains.
In particular, when one considers the result of transporting an ´etale-like structure such as a Galois group [or ´etale fundamental group] across such a link [cf. the discussion of §2.7, (iii)], one must abandon the interpretation of such a Galois group as a group of automorphisms of some ring [or field] structure [cf. [AbsTopIII], Remark 3.7.7, (i); [IUTchIV], Remarks 3.6.2, 3.6.3], i.e., one must regard such a Galois group as an abstract topological group that is not equipped with any of the “labelling structures” that arise from the relationship between the Galois group and various scheme-theoretic objects.
It is precisely this state of affairs that results in the quite central role played in inter-universal Teichm¨uller theory by results in [mono-]anabelian geometry, i.e., by results concerned with reconstructing various scheme-theoretic structures from an abstract topological group that “just happens” to arise from scheme theory as a Galois group/´etale fundamental group.

つづく
529
(1): 2022/04/23(土)20:46 ID:MU2asfqc(13/24) AAS
>>528
つづき

<google訳>
P27
§2.10。 宇宙際:座標の変化としての宇宙の変化
リンクの1つの基本的な側面[cf. §2.7、(i)]の議論、つまり、宇宙際タイヒミュラー理論で発生するΘリンクとログリンクは、それらのdomains and codomainsとに現れるリングとスキームのリング構造との非互換性です。
特に、ガロア群[またはエタール基本群]のような「エタールのような構造」をそのようなリンクを介して輸送した結果を考えると[cf. §2.7、(iii)]の議論では、あるリング[または体]構造の自己同形群としてのそのようなガロア群の解釈を放棄しなければなりません[cf. [AbsTopIII]、備考3.7.7、(i); [IUTchIV]、備考3.6.2、3.6.3]、つまり、そのようなガロア群は、ガロア群との関係から生じる「ラベリング構造」を備えていない抽象的な位相群と見なす必要があります。
さまざまなスキーム理論オブジェクト。
宇宙際タイヒミュラー理論で[モノ]遠アーベル幾何学の結果、つまり抽象的な位相群からのさまざまな概型理論構造の再構築に関係する結果によって、非常に中心的な役割を果たしているのはまさにこの状況です。
それは、ガロア群/エタール基本群としての概型理論から生じる「たまたま」です。
省1
530
(1): 2022/04/23(土)20:47 ID:MU2asfqc(14/24) AAS
>>529
つづき

<原文>
In this context, we remark that it is also this state of affairs that gave rise to the term “inter-universal”:
That is to say, the notion of a “universe”, as well as the use of multiple universes within the discussion of a single set-up in arithmetic geometry, already occurs in the mathematics of the 1960’s, i.e., in the mathematics of Galois categories and ´etale topoi associated to schemes.
On the other hand, in this mathematics of the Grothendieck school, typically one only considers relationships between universes
- i.e., between labelling apparatuses for sets - that are induced by morphisms of schemes,
i.e., in essence by ring homomorphisms.
The most typical example of this sort of situation is the functor between Galois categories of ´etale coverings induced by a morphism of connected schemes.
By contrast, the links that occur in inter-universal Teichm¨uller theory are constructed by partially dismantling the ring structures of the rings in their domains and codomains [cf. the discussion of §2.7, (vii)], hence necessarily result in
省4
531
(1): 2022/04/23(土)20:47 ID:MU2asfqc(15/24) AAS
>>530
つづき

<google訳>
これに関連して、「宇宙際」という用語を生み出したのもこの状況であることに注意してください:
つまり、「宇宙」の概念、および数論幾何学の単一のセットアップの議論内での複数の宇宙の使用は、1960年代の数学、つまりガロアの数学ですでに発生しています。スキームに関連付けられたカテゴリと「古いトポス」。
一方、グロタンディーク派のこの数学では、通常、宇宙間の関係のみを考慮します。
-つまり、スキームの射によって誘発されるセットのラベリング装置間-
つまり、本質的に環準同型によるものです。
この種の状況の最も典型的な例は、接続されたスキームの射によって誘発された「エタール射」のガロアカテゴリー間の関手です。
対照的に、宇宙際タイヒミュラー理論で発生するリンクは、ドメインと終域のリングのリング構造を部分的に解体することによって構築されます[cf. §2.7、(vii)]の議論、したがって必然的に結果として
省4
532
(1): 2022/04/23(土)20:48 ID:MU2asfqc(16/24) AAS
>>531
つづき

<原文>
That is to say, it is precisely this sort of situation that is referred to by the term “inter-universal”.
Put another way, a change of universe may be thought of [cf. the discussion of §2.7, (i)] as a sort of abstract/combinatorial/arithmetic version of the classical notion of a “change of coordinates”.
In this context, it is perhaps of interest to observe that, from a purely classical point of view, the notion of a [physical] “universe” was typically visualized as a copy of Euclidean three-space.
Thus, from this classical point of view, a “change of universe” literally corresponds to a “classical change of the coordinate system - i.e., the labelling apparatus - applied to label points in Euclidean three-space”!

<google訳>
つまり、まさにこの種の状況が「宇宙際」という言葉で呼ばれているのです。
言い換えれば、宇宙の変化は考えられるかもしれません[cf. §2.7の議論、(i)]「座標の変化」の古典的な概念の一種の抽象/組み合わせ/算術バージョンとして。
省3
533
(1): 2022/04/23(土)20:49 ID:MU2asfqc(17/24) AAS
>>532

つづき

<原文>
Indeed, from an even more elementary point of view, perhaps the simplest example of the essential phenomenon under consideration here is the following purely combinatorial phenomenon: Consider the string of symbols
010
? i.e., where “0” and “1” are to be understood as formal symbols.
Then, from the point of view of the length two substring 01 on the left, the digit “1” of this substring may be specified by means of its “coordinate relative to this substring”, namely, as the symbol to the far right of the substring 01. In a similar vein, from the point of view of the length two substring 10 on the right, the digit “1” of this substring may be specified by means of its “coordinate relative to this substring”, namely, as the symbol to the far left of the substring 10.
On the other hand, neither of these specifications via “substring-based coordinate systems”is meaningful to the opposite length two substring; that is to say, only the solitary abstract symbol “1” is simultaneously meaningful, as a device for specifying the digit of interest, relative to both of the “substring-based coordinate systems”.

つづく
534
(1): 2022/04/23(土)20:50 ID:MU2asfqc(18/24) AAS
>>533
つづき

<google訳>
確かに、さらに基本的な観点から、ここで検討されている本質的な現象のおそらく最も単純な例は、次の純粋な組み合わせ現象です。記号の文字列を検討してください。
010
?つまり、「0」と「1」は正式な記号として理解されます。
次に、左側の長さ2の部分文字列01の観点から、この部分文字列の数字「1」は、その「この部分文字列に対する座標」によって、つまり、の右端の記号として指定できます。部分文字列01。同様に、右側の長さ2の部分文字列10の観点から、この部分文字列の数字「1」は、その「この部分文字列に対する座標」、つまり次のように指定できます。サブストリング10の左端にある記号。
一方、「サブストリングベースの座標系」によるこれらの仕様はどちらも、反対の長さの2つのサブストリングには意味がありません。つまり、両方の「部分文字列ベースの座標系」に対して、対象の数字を指定するためのデバイスとして、単独の抽象記号「1」のみが同時に意味を持ちます。

つづく
535
(1): 2022/04/23(土)20:51 ID:MU2asfqc(19/24) AAS
>>534
つづき

外部リンク:ja.wikipedia.org
強制法
強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。
直観的意味合い
直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている。 この大きい宇宙では、拡大する前の宇宙には無かった ω = {0,1,2,…} の新しい部分集合をたくさん要素に持っている。

外部リンク:ja.wikipedia.org
クラス (集合論)
集合論及びその応用としての数学におけるクラスまたは類(るい、英: class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。
省3
536: 2022/04/23(土)20:51 ID:MU2asfqc(20/24) AAS
>>535
つづき

外部リンク:ja.wikipedia.org
圏 (数学)
圏の大きさ
圏 C が小さい (small) とは、対象の類 ob(C) および射の類 hom(C) がともに集合となる(つまり真の類でない)ときに言い、さもなくば大きい (large) と言う。射の類が集合とならずとも、任意の二対象 a, b ∈ ob(C) をとるごとに、射の類 hom(a, b) が集合となるならば(hom(a, b) を射集合、ホム集合などと呼び)、その圏は局所的に小さい (locally small) と言う[3]。集合の圏など数学における重要な圏の多くは、小さくないとしても、少なくとも局所的に小さい。
文献によっては、局所的に小さい圏のみを扱い、それを単に圏と呼ぶ場合もある[4][5]。
(引用終り)
以上
537
(2): 2022/04/23(土)20:56 ID:Ps5+A8/C(1) AAS
こんなコピペ地獄はうんざりという方は通常スレにてお願いします
538
(2): 2022/04/23(土)20:59 ID:MU2asfqc(21/24) AAS
>>527 補足

いまどきの普通の圏論の教科書を読んだ人が
”宇宙”とか言われると
違和感あると思うな

まあ”16歳でプリンストン大学へ進学、19歳で学士課程を卒業(次席)[7]。23歳で博士課程を修了しPh.D.を取得[2]。
日本へ帰国後は京都大学に採用され、助手(23歳)、同助教授(27歳)を経て、同教授(32歳)に昇任[2]。” 外部リンク:ja.wikipedia.org
だと、凡人とは勉強の仕方が違う気がする

もっとも、”宇宙”は個人趣味として読めば
こんな用語の問題は
IUTの数学的本質には、影響なしでしょう
539
(1): 2022/04/23(土)21:00 ID:MU2asfqc(22/24) AAS
>>537
おまえも、あっちへ池w
540
(1): 2022/04/23(土)21:11 ID:MU2asfqc(23/24) AAS
5chで、ウンザリするのは
ちょっと長いと、長文だとがうるさいやつがいる

”コピペ地獄”だぁ?

 (>>527
>宇宙際Teichmuller理論
>[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF   NEW !! (2020-12-23)
>外部リンク[pdf]:www.kurims.kyoto-u.ac.jp

このPDFは、A4 で全部で170ページあって
関連のwikipediaも、コピーしたのはほんの1/10程度

コピー見るのがいやなら、原文で10倍の文読めば良いんだよ
省6
541: 2022/04/23(土)21:14 ID:shYw/6kL(1) AAS
>>519
んなのいっぱいあるじゃん。量子力学なんてアインシュタインは死ぬまで受け入れなかったし。
542: sage 2022/04/23(土)21:16 ID:QsI5QJEc(1) AAS
>>525

>復元と逆関数は共に「逆だから」揉めるってか。

「逆」だからで揉めるのでななく、ー1とか逆関数にすると論議が百出する
ー1のような【扱ってはいけない対象」だから。これを逆にしたから、「充満多重同型」の定義で否定された?
543
(2): 2022/04/23(土)22:02 ID:MU2asfqc(24/24) AAS
<そもそも>>5より再録>
スレ46 2chスレ:math
アンチのみなさん、幼稚すぎ
小学生なみ
そういう議論は、本スレが アンチでお願いしますよ
ここでは、大人の議論をしましょうね

1.まず、論文の不正は、「医学・生命科学系の論文」に多い。だが、数学では、いまだ寡聞にして知らず。おそらく、これからも無いでしょう
2.「医学・生命科学系の論文」は、実験結果や診療の結果が記載されるのが普通で、ここは論文執筆者が、やろうと思えば捏造可能だ。しかし、数学では捏造の余地が皆無
 (これは、数学科学部卒でも同意してくれるだろう。同意できないのは、小学生です。どうぞ、本スレが アンチへ)
3.数学では捏造の余地が皆無で、もし意図して不自然なことをしても、すぐバレル。「おまえ、アホやなー」です
省17
544
(1): 2022/04/23(土)23:11 ID:BYr22/q6(1) AAS
お前がな
>>よそのスレ996
545: 2022/04/24(日)01:33 ID:ylhdhIwh(1) AAS
同値関係や行列の正則すら理解できないmath jinスレならコピペ地獄wで
大暴れしかないだろうよ
546
(1): 2022/04/24(日)08:00 ID:/7dcPctj(1/16) AAS
>>538 補足
>いまどきの普通の圏論の教科書を読んだ人が
>”宇宙”とか言われると
>違和感あると思うな

下記のベーシック圏論 Leinsterに、”宇宙”が2箇所出てくる

外部リンク:www.maruzen-publishing.co.jp
ベーシック圏論 普遍性からの速習コース
原書名 Basic Category Theory
著者名 斎藤 恭司 監修 土岡 俊介 訳 丸善出版 2017年01月
<arxiv公開>
省10
1-
あと 456 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.024s