[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
559
: 2022/04/24(日)10:14
ID:/7dcPctj(8/16)
AA×
>>558
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
559: [] 2022/04/24(日) 10:14:18.65 ID:/7dcPctj >>558 つづき In order to verify the approximate relation qN “=〜” q, one begins by introducing two distinct - i.e., two “mutually alien” - copies of the conventional scheme theory surrounding the given initial Θ-data. Here, the intended sense of the descriptive “alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. These two mutually alien copies of conventional scheme theory are glued together - by considering relatively weak underlying structures of the respective conventional scheme theories such as multiplicative monoids and profinite groups - in such a way that the “qN ” in one copy of scheme theory is identified with the “q” in the other copy of scheme theory. This gluing is referred to as the Θ-link. Thus, the “qN ” on the left-hand side of the Θ-link is glued to the “q” on the right-hand side of the Θ-link, i.e., qNLHS “=” qRHS [cf. §3.3, (vii), for more details]. Here, “N” is in fact taken not to be a fixed natural number, but rather a sort of symmetrized average over the values j2, where j = 1,...,l*, and we write l* def = (l ? 1)/2. Thus, the left-hand side of the above display {qj2LHS}j bears a striking formal resemblance to the Gaussian distribution. One then verifies the desired approximate relation qN “=〜” q by computing {qj2LHS}j - not in terms of qLHS [which is immediate from the definitions!], but rather - in terms of [the scheme theory surrounding] qRHS [which is a highly nontrivial matter!]. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1644632425/559
つづき 引用終り 以上
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 443 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.036s