[過去ログ] 高校数学の質問スレ Part421 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
203: 2022/09/18(日)07:33 ID:PRT3UENc(3/3) AAS
難易度がかなり上がります。

次の命題の真偽を述べ、証明せよ。

「C[4n,2n]/C[2n,n]が整数となるnは有限個しか存在しない。」

ここでC[s,t]は二項係数sCtである。
204: 2022/09/18(日)09:30 ID:oPr43kkK(1) AAS
高校数学確率の問題です。
外部リンク[html]:oshiete.goo.ne.jp
に出ている面白い問題について教えてください。

 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子である確率を求める。ただし男女とも全員が正直に答えるものとする。

 性体験済みである生徒の事象を A、女子生徒である事象を B とする。
 M 高校の生徒総数を 100 とすると、
  男子で性体験済の数は 100*0.25*0.12 = 3.
  女子で性体験済の数は 100*0.75*0.08 = 6.
  n(A) = 6 + 3 = 9.
省23
205: 2022/09/18(日)10:18 ID:pCCEpRA9(1) AAS
xを正の実数として
∫cos(x-(1/x))dx
の不定積分を求めたいのですが解けませんでした
テイラー展開を使って適切にくくっていったりすると綺麗に解けるのでしょうか?
206
(1): 2022/09/18(日)16:19 ID:XV1Lk3hZ(1/5) AAS
ax+by+cz=kが解を持つ
ことの必要十分条件は、
kがa、b、cの最大公約数で割り切れる
ことである。これを証明せよ。文字は全て整数とする。(塾のテキスト)
207
(1): 2022/09/18(日)16:24 ID:XV1Lk3hZ(2/5) AAS
32x+57y-68z=1
を解け。文字は全て整数とする。
(塾のテキスト)
208
(1): 2022/09/18(日)16:30 ID:XV1Lk3hZ(3/5) AAS
ay-bx=k
を解け。文字は全て整数とする。
答えは適当なパラメーターを用いて表せ。(塾のテキスト)
209: 2022/09/18(日)16:37 ID:1LRm9WRW(1) AAS
a,b,cはすべて自然数

a+b=c
c>ab
このときabは一意の値となることを証明できますか?
c<abならばa,bはc,1となることは分かるのですが
210
(1): 2022/09/18(日)16:39 ID:XV1Lk3hZ(4/5) AAS
整数の集合をAとする。Aに属する任意の2つの元(要素)x、yに対して加法と減法によって得られるx+y、x-yがAに属する時、AはAに属する絶対値最小の整数rの全ての倍数けらなる集合であることを証明せよ。ただしr≠0、A≠{0}とする。(塾のテキスト)
211: 2022/09/18(日)16:54 ID:NlcuiHM+(1) AAS
高校数学レベルから分かりませんがこれについてどうお考えですか?

14 132人目の素数さん sage 2022/09/18(日) 16:26:28.76 ID:NlcuiHM+
>>6
違います

理系科目は寒冷地における狩猟採集時代に男が狩りに出て女が食糧貯蔵やその管理を行っていた頃の名残
日本でも家計を握るのは女

男は狩りをするための武器を作ったり(つまり工学)、マンモスだけじゃなく女を射止めるの武器、そう詩や芸術を行うための能力を育んでいた

和歌とかでも男の恋の歌の方が女の恋の歌よりも圧倒的に多い
アジアでは常に男は天下国家、あるいは時には天上(形而上学)を見据えていた
省7
212: 2022/09/18(日)17:37 ID:XV1Lk3hZ(5/5) AAS
>>206
f(x, y, z)=ax+by+czとおく
a, b, cはどれも0ではないとする。
f(0, 0, 0)=0より0はfの値である
f(e0)=kとなったとするとf(-e0)=-kなので、kがfの値ならば-kもfの値となる。
fには正の値が存在する。係数の符号と同じ符号の整数を取ればよい。そのうち最小のものをk0とすると任意の正の値kはk0の倍数である。もしkがk0の倍数でないとするとk=qk0+r、0<r<k0を満たす整数q、rの組が唯一つ定まる。
f(x-qx0, y-qy0, z-qz0)=k-qk0=r
k0よりも小さい正の値rをとることになりk0の最小性に矛盾する。よってkおよび-kはk0の倍数である。
a、b、cはfの値であるのでk0の倍数である。
a、b、cの最大公約数をdとするとk0はdの倍数。よってk0=dとなる。
省1
213: 2022/09/18(日)19:02 ID:MxB4/sJ4(1/3) AAS
>>207
32x+57y-68z=1
(32, 57, 68)→(32, 7, 4),→(0, 1, 4)
68=32×2+4、57=32×2-7より
32(x+2y-2z)-7y-4z=1
s=x+2y-2zとおく
32s-7y-4z=1
32=4×8、7=4×2-1より
4×8s-(4×2-1)y-4z=1
4(8s-2y-z)+y=1
省4
214: 2022/09/18(日)19:14 ID:MxB4/sJ4(2/3) AAS
>>208
特殊解を(x0, y0)とする
a, bの最大公約数をgとして
a=gA, b=gBとおく。すなわちAとBは互いに素となる。
n=(-b,a)が法線ベクトルなので
l=(a, b)=g(A, B)が方向ベクトル
x=x0+ltより x=x0+At, y=y0+Bt
215: 2022/09/18(日)19:29 ID:MxB4/sJ4(3/3) AAS
>>210
Aの中で最小の絶対値≠0を持つものをkとする。
k-k=0∈A、0-k∈A、k+k=2k∈A
これらより全ての整数nに対してnk∈A
よってkの倍数は全てAに含まれる。逆にAに含まれる元は全てkの倍数であることは、
任意のa∈Aは
a=qk+r、0≦r<|k|、とq、rを用いて一意に表せる。a, qk∈Aよりr∈A、|k|の最小生により表せる=0。よってaはkの倍数である。
216
(1): 2022/09/18(日)19:49 ID:1uJTCEh3(1/3) AAS
(塾のテキスト)1
ある整数bに対して
(1) bの倍数同士の和はbの倍数である。
(2) bの倍数の倍数はbの倍数てある。
(3) 一般にak (k=1…n) がbの倍数の時、Σ[k=1, n] akxk (4)
はbの倍数である。

(4)においてxk=1(k=1…n)とすれば(1)になる。x1=1、xk=0 (k≠1) とすれば(2)になる。
217
(1): 2022/09/18(日)19:52 ID:1uJTCEh3(2/3) AAS
aは任意、b>0とすると
a=qb+r、0≦r<bを満たすq、rの組が唯一つ存在することを証明せよ。
218: 2022/09/18(日)20:01 ID:1uJTCEh3(3/3) AAS
>>216
仮定より任意のk (k=1…n)に対してak=bck、ckは整数、とおける
Σ[k=1, n]akxk=Σ[k=1, n](bkck)xk=Σ[k=1, n]ckxk
これは整数である。
219: 2022/09/18(日)21:22 ID:Ff693uua(1) AAS
>>217
任意の実数xに対して、qb≦x<(q+1)bを満たす整数qが唯一つ存在する。

区間[q, q+1)は整数qを1つ定めれば唯一つに決まる。整数qが異なれば区間は異なり共通部分は無い。

整数aは上の実数xの性質を持つのでqb≦a<(q+1)bが成り立つ。
0≦a-qb<b
(q, r)とは別の組(q', r')が存在すると
仮定すると
a=qb+r=q+b+r+とおける
(q-q')b=(r'-r)
0≦r<b、0≦r'<bより
省9
220
(2): イナ ◆/7jUdUKiSM 2022/09/18(日)23:59 ID:MVwJcp0M(1) AAS
>>195計算過程をちゃんと示したい。
間違いなく解けたはず。
-1/cos^3θの項が出て-1/(cosθ・cos^2θ)と分けるやり方を勉強した。
221: 2022/09/19(月)00:30 ID:9CJacGxy(1/4) AAS
いいですね、回答に勢いがあります。
では私からも質問します。

次の命題の真偽を述べ、証明せよ。
「C[4n,2n]/C[2n,n]が整数となるnは有限個しか存在しない。」
ここでC[s,t]は二項係数sCtである。
222
(2): 2022/09/19(月)01:23 ID:piJNIv7g(1/10) AAS
1 公倍数は最小公倍数の倍数であることを証明せよ。
1-
あと 780 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.840s*