[過去ログ] 高校数学の質問スレ Part421 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
110(2): 【凶】 2022/09/14(水)00:43 ID:NRyfUKVj(1) AAS
前>>90
>>44
∫[x=-1→2](x+2-x^2)dx=[x^2/2+2x-x^3/3](x=-1→2)
=2+4-8/3-{1/2-2-(-1/3)}
=8-3-1/2
=9/2
領域Dの面積の半分は9/4
領域Dのうちy≦1の部分の面積は(2/3)×2=4/3
9/4-4/3=(27-16)/12=11/12
領域Dの面積を2等分する線分の方程式をy=ax+bとおくと、
y=x+2との交点の座標は、
((2-b)/(a-1),(2a-b)/(a-1))
y=x^2との交点の座標は、
({a+√(a^2+4b)}/2,{a^2+2b+a√(a^2+4b)}/2)
11/12=直角三角形+台形+(y=ax+b,y=x^2,x=1で囲まれた領域の面積)
=(a-b+1)^2/2(a-1)^2+(a^2+ab-a-2b+2)(a+b-3)/2(a-1)^2+∫[x=1→{a+√(a^2+4b)}/2](ax+b-x^2)dx
aは-1よりやや大きい。
bは2よりやや小さい。
ピタゴラスの定理より領域Dを等しく2分割する線分の長さの最小値の2乗は、
[{a+√(a^2+4b)}/2-(2-b)/(a-1)]^2+{(2a-b)/(a-1)-(a+b)}^2
a,bを特定して線分の長さの最小値を求めるのですか?
上下前次1-新書関写板覧索設栞歴
あと 892 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.007s