[過去ログ] 高校数学の質問スレ Part421 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
763: 2022/09/25(日)16:15 ID:EHYHd7NM(7/13) AAS
>>750
>>>746
>ただ頭が悪いだけなら許せるが、その性格の悪さだけはどうしようもない。
>
>なぜ、出題スレがあるのにそちらに書かず、このスレにスレ違いであるにも
>関わらず粘着しつづけるのか?釈明できないでしょ?
764: 2022/09/25(日)16:15 ID:EHYHd7NM(8/13) AAS
>>744
>お前の勢いがなくなったってことか?w
>いつまでもここを荒らしてんじゃないよ、低能
765: 2022/09/25(日)16:16 ID:EHYHd7NM(9/13) AAS
>>750
>ただ頭が悪いだけなら許せるが、その性格の悪さだけはどうしようもない。
>
>なぜ、出題スレがあるのにそちらに書かず、このスレにスレ違いであるにも
>関わらず粘着しつづけるのか?釈明できないでしょ
766: 2022/09/25(日)16:16 ID:EHYHd7NM(10/13) AAS
>>753
>そういうコミュニケーション不能な輩に対峙するにはどうするか。
>
>放置するか、妨害するかのどちらかしかない。やれることは限られている。
まあ、そういうこと
767(1): 2022/09/25(日)16:16 ID:EHYHd7NM(11/13) AAS
>>740
>自分でスレ立てて一人で自問自答してろよ。
768(1): 2022/09/25(日)16:17 ID:EHYHd7NM(12/13) AAS
>どうしたん?www
>
>
>>717132人目の素数さん2022/09/24(土) 22:07:53.53ID:s4cIUXMJ
>>1からnまでの整数全体の中にnと互いに素な数は何個あるか、その個数をφ(n)で表し、整数論的関数φ(n)をEuler
>>
>>722132人目の素数さん2022/09/24(土) 22:42:24.24ID:s4cIUXMJ
>>>717
>>φ(1)=1、φ(2)=1、φ(3)=2、
>>φ(4)=2、φ(5)=4、φ(6)=2
769: 2022/09/25(日)16:17 ID:EHYHd7NM(13/13) AAS
>開き直って自問自答を繰り返すキチガイが性懲りもなく出題かw
>
>キチガイにつける薬はあるはずなんだが、投薬されてないのかね?
770(3): 2022/09/25(日)18:10 ID:1UsSuqxr(1/2) AAS
>>720
任意の2個の整数が互いに素ならば(a, bc)=1になるから
φ(abc)=φ(a)φ(bc)=φ(a)φ(b)φ(c)となる。何個あっても同じである。
これを用いると
φ(n)=φ(p^α)φ(q^β)…
=p^α(1-1/p)q^β(1-1/q)…
=n(1-1/p)(1-1/q)…となり証明された。
(r+nt, n)=(r, n)
nを法としての既約類の数がφ(n)
すなわち既約剰余系の数がφ(n)
省10
771: 2022/09/25(日)18:11 ID:1UsSuqxr(2/2) AAS
よって>>721が解決した
772(1): 2022/09/25(日)18:22 ID:Kob8sbcV(12/68) AAS
>770 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 18:10:41.91 ID:1UsSuqxr
>(i)回転体をx=t(-1/2≦t<0,1<t≦3/2)で切った断面はドーナツ型で、
>体積=2π〔∫[t=-1/2→0][√3/2+√{1-(1/2-t)^2}]^2-∫[t=1→3/2][√3/2-√{1-(1/2-t)^2}]^2〕
>=4π√3∫[t=-1/2→0]√{1-(1/2-t)^2}dt
>1/2-t=cosθとおくと-dt=-sinθdθ
>dt=sinθdθ
>体積=2π√3∫[θ=0→π/3]sinθsinθdθ
>=4π√3∫[θ=0→π/3]sinθ^2θdθ
>=4π√3∫[θ=0→π/3](1/2-cos2θ/2)dθ
>=4π√3[θ=0→π/3][θ/2-sin2θ/4]dθ
省2
773: 2022/09/25(日)18:22 ID:Kob8sbcV(13/68) AAS
>>746
ただ頭が悪いだけなら許せるが、その性格の悪さだけはどうしようもない。
なぜ、出題スレがあるのにそちらに書かず、このスレにスレ違いであるにも
関わらず粘着しつづけるのか?釈明できないでしょ?
774: 2022/09/25(日)18:22 ID:Kob8sbcV(14/68) AAS
>>768
>>>717132人目の素数さん2022/09/24(土) 22:07:53.53ID:s4cIUXMJ
>>>1からnまでの整数全体の中にnと互いに素な数は何個あるか、その個数をφ(n)で表し、整数論的関数φ(n)をEuler
>>>
>>>722132人目の素数さん2022/09/24(土) 22:42:24.24ID:s4cIUXMJ
>>>>717
>>>φ(1)=1、φ(2)=1、φ(3)=2、
>>>φ(4)=2、φ(5)=4、φ(6)=2
775(1): 2022/09/25(日)18:23 ID:Kob8sbcV(15/68) AAS
数学の能力もなく愚問を出題し続け、
コミュニケーションをとる能力もなく、
他者を思いやる常識も持ち合わせない
そんな異常性格者にどう対処するか。
φ(n)=φ(p^α)φ(q^β)…
=p^α(1-1/p)q^β(1-1/q)…
=n(1-1/p)(1-1/q)…となり証明された。
(r+nt, n)=(r, n)
nを法としての既約類の数がφ(n)
すなわち既約剰余系の数がφ(n)
776: 2022/09/25(日)18:23 ID:Kob8sbcV(16/68) AAS
>>775
>そんな異常性格者にどう対処するか。
>φ(n)=φ(p^α)φ(q^β)…
>=p^α(1-1/p)q^β(1-1/q)…
>=n(1-1/p)(1-1/q)…となり証明された。
>(r+nt, n)=(r, n)
>nを法としての既約類の数がφ(n)
>すなわち既約剰余系の数がφ(n)
777: 2022/09/25(日)18:24 ID:Kob8sbcV(17/68) AAS
>>767
>>自分でスレ立てて一人で自問自答してろよ。
778: 2022/09/25(日)18:24 ID:Kob8sbcV(18/68) AAS
772 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 18:22:13.72 ID:Kob8sbcV
>770 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 18:10:41.91 ID:1UsSuqxr
>(i)回転体をx=t(-1/2≦t<0,1<t≦3/2)で切った断面はドーナツ型で、
>体積=2π〔∫[t=-1/2→0][√3/2+√{1-(1/2-t)^2}]^2-∫[t=1→3/2][√3/2-√{1-(1/2-t)^2}]^2〕
>=4π√3∫[t=-1/2→0]√{1-(1/2-t)^2}dt
>1/2-t=cosθとおくと-dt=-sinθdθ
>dt=sinθdθ
>体積=2π√3∫[θ=0→π/3]sinθsinθdθ
>=4π√3∫[θ=0→π/3]sinθ^2θdθ
>=4π√3∫[θ=0→π/3](1/2-cos2θ/2)dθ
省8
779: 2022/09/25(日)18:25 ID:Kob8sbcV(19/68) AAS
>772 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 18:22:13.72 ID:Kob8sbcV
>>770 名前:132人目の素数さん Mail:sage 投稿日:2022/09/25(日) 18:10:41.91 ID:1UsSuqxr
>>(i)回転体をx=t(-1/2≦t<0,1<t≦3/2)で切った断面はドーナツ型で、
>>体積=2π〔∫[t=-1/2→0][√3/2+√{1-(1/2-t)^2}]^2-∫[t=1→3/2][√3/2-√{1-(1/2-t)^2}]^2〕
>>=4π√3∫[t=-1/2→0]√{1-(1/2-t)^2}dt
>>1/2-t=cosθとおくと-dt=-sinθdθ
なぜ、出題スレがあるのにそちらに書かず、このスレにスレ違いであるにも
関わらず粘着しつづけるのか?釈明できないでしょ?
780: 2022/09/25(日)18:25 ID:Kob8sbcV(20/68) AAS
ただ頭が悪いだけなら許せるが、その性格の悪さだけはどうしようもない。
なぜ、出題スレがあるのにそちらに書かず、このスレにスレ違いであるにも
関わらず粘着しつづけるのか?釈明できないでしょ?
781: 2022/09/25(日)18:25 ID:Kob8sbcV(21/68) AAS
>開き直って自問自答を繰り返すキチガイが性懲りもなく出題かw
>
>キチガイにつける薬はあるはずなんだが、投薬されてないのかね?
>開き直って自問自答を繰り返すキチガイが性懲りもなく出題かw
>
>キチガイにつける薬はあるはずなんだが、投薬されてないのかね?
>開き直って自問自答を繰り返すキチガイが性懲りもなく出題かw
>
>キチガイにつける薬はあるはずなんだが、投薬されてないのかね?
>開き直って自問自答を繰り返すキチガイが性懲りもなく出題かw
省2
782: 2022/09/25(日)18:41 ID:IKYrLvk3(1) AAS
何かレス番跳び捲りだな
上下前次1-新書関写板覧索設栞歴
あと 220 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.012s