[過去ログ]
高校数学の質問スレ Part421 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
889
: 2022/09/27(火)15:55
ID:CMRjnN5K(15/25)
AA×
>>737
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
889: [sage] 2022/09/27(火) 15:55:04.38 ID:CMRjnN5K せっかっくイナさんが詳しい解答書いてくれてるんだ。 レスしてやれw >>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。 (2) 求める距離をd、円Cをx^2+y^2=1とすると、 例えばLはy=-dでよい。 (i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、 体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt t=sinθとおくとdt=cosθdθ 体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ =4π∫[θ=-π/2→-α]dcos^2θdθ =4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ =4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ =4dπ(-α/2+π/4+sin2α/4) =-2dαπ+dπ^2+dπsin2α (ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、 体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt t=sinθとおくとdt=cosθdθ 体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ =2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ =2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3} =2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9} =-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9} (i)(ii)より、 体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π d=cosα,sinα=√(1-d^2) dの2次方程式を解けばなにかわかるかも。 http://rio2016.5ch.net/test/read.cgi/math/1662638587/889
せっかっくイナさんが詳しい解答書いてくれてるんだ レスしてやれ 回転体の通過領域がちょうど重なるから明らかに最小となる 求める距離を円をとすると 例えばはでよい 回転体をで切った断面は円環で 体積 とおくと 体積 回転体をで切った断面は円で 体積 とおくと 体積 より 体積 の次方程式を解けばなにかわかるかも
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 113 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.063s