[過去ログ] 高校数学の質問スレ Part421 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
669(1): 2022/09/23(金)23:53 ID:HHBZiUY8(1) AAS
>>641
x²≡1 mod12はx≡1, 5, 7, 11の4つの解を持つ。すなわち2個以下ではない。12が素数でないからである。x²≡2 mod3は解を1つも持たない。x≡0, 1である。
f(x)≡0 modpの解をx₀とすると
f(x)≡0 modp²の解はx₀+pyと表せる。f(x₀+py)≡f(x₀)+pyf'(x₀)≡0
第3項以降は全てp²の倍数になる。
p∤f'(x₀)の時, 唯一つの解を持つ。
x≡x₀+py₀ modp²
それ以外の場合は解を持たないか周期pでp個の解を持つ。
解の個数は1個、または0個またはp個。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.821s*