[過去ログ] 高校数学の質問スレ Part421 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
206
(1): 2022/09/18(日)16:19 ID:XV1Lk3hZ(1/5) AAS
ax+by+cz=kが解を持つ
ことの必要十分条件は、
kがa、b、cの最大公約数で割り切れる
ことである。これを証明せよ。文字は全て整数とする。(塾のテキスト)
207
(1): 2022/09/18(日)16:24 ID:XV1Lk3hZ(2/5) AAS
32x+57y-68z=1
を解け。文字は全て整数とする。
(塾のテキスト)
208
(1): 2022/09/18(日)16:30 ID:XV1Lk3hZ(3/5) AAS
ay-bx=k
を解け。文字は全て整数とする。
答えは適当なパラメーターを用いて表せ。(塾のテキスト)
210
(1): 2022/09/18(日)16:39 ID:XV1Lk3hZ(4/5) AAS
整数の集合をAとする。Aに属する任意の2つの元(要素)x、yに対して加法と減法によって得られるx+y、x-yがAに属する時、AはAに属する絶対値最小の整数rの全ての倍数けらなる集合であることを証明せよ。ただしr≠0、A≠{0}とする。(塾のテキスト)
212: 2022/09/18(日)17:37 ID:XV1Lk3hZ(5/5) AAS
>>206
f(x, y, z)=ax+by+czとおく
a, b, cはどれも0ではないとする。
f(0, 0, 0)=0より0はfの値である
f(e0)=kとなったとするとf(-e0)=-kなので、kがfの値ならば-kもfの値となる。
fには正の値が存在する。係数の符号と同じ符号の整数を取ればよい。そのうち最小のものをk0とすると任意の正の値kはk0の倍数である。もしkがk0の倍数でないとするとk=qk0+r、0<r<k0を満たす整数q、rの組が唯一つ定まる。
f(x-qx0, y-qy0, z-qz0)=k-qk0=r
k0よりも小さい正の値rをとることになりk0の最小性に矛盾する。よってkおよび-kはk0の倍数である。
a、b、cはfの値であるのでk0の倍数である。
a、b、cの最大公約数をdとするとk0はdの倍数。よってk0=dとなる。
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.477s*