[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
4(4): 2024/03/17(日)08:48 ID:Wb4r6a5R(4/10) AAS
つづき
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice
asked Dec 9 '13 at 16:16 Denis
(Denis質問)
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
(Pruss氏)
The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate.
(Huynh氏)
If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
省20
708: 2024/04/04(木)13:53 ID:dPnluKh5(3/3) AAS
>>703
(引用開始)
常識的なモデルで書くと
Xをコイントスで出た目を表す確率変数
Yを賭けた目を表す確率変数
とすれば、
賭けに勝利する事象AはX=Y
賭けに勝利する確率はP(A)
XとYが一致したときに勝利する確率はP(A|X=Y)
XとYが一致しなかったときに勝利する確率はP(A|X≠Y)
省28
739(3): 2024/04/08(月)18:45 ID:It9BFo2r(3/3) AAS
>>737
あれ?
X_n が独立?
”Q2.Ynそれぞれは独立か否か?”だったろ?
いつのまに、X_n の独立の話にすり替わった?
なお、関連で>>734でも確認したろ
X_n が独立でなければ、箱入り無数目とは前提が違うよ
例えば、X_n が独立でなく、>>4 Choice Games Sergiu Hart 外部リンク[pdf]:www.ma.huji.ac.il
のGame2のようにしっぽが周期をもつ(つまり独立でない)ならば
箱の中の数を当てる方策は存在するよ
省4
743: 2024/04/08(月)23:17 ID:CplCjVg1(3/4) AAS
>>740-742
メシウマさんか
お元気そうでなによりです。
>めしうまさんですけど、X_nが互いに独立という仮定は使うのが難しくないですか?
あとの>>742 "これでは一様だとは言えんかったわ"で自得されているとおりですね
そもそも、箱入り無数目>>1で、(外部リンク:imgur.com)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
省21
751(1): 2024/04/09(火)10:59 ID:LHOMDWTh(2/7) AAS
>>746
スレ主です
Sariputraね
また、あやしげな名前をw
>3つの前提は、そもそも1が言い出したものと思われる
・3つの前提とは>>733より
『1.可算無限個の確率変数 X1,X2,... .
2.それぞれは、Sに一様分布
3.それぞれは互いに独立』
のことか?
省13
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s