[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
967(3): 06/05(水)11:07 ID:GTWVkqvF(2/4) AAS
>>966
1)反例があることは、お認めになられたわけですね
それは結構なことだ
2)さて、>>963&>>958に示したように
「(箱の中の)実数Rを考えると、上記のように、L=nにおいて決定番号d=nの確率1
決定番号d<nの確率0
この状況で、n→∞とすれば確率1の箱は無限のかなたに飛んでいく
有限dの部分では、確率0の部分が残る
即ち、決定番号の分布は存在しない」
これを認めると
省7
969: 06/05(水)11:14 ID:M1ul548b(2/3) AAS
>>967
>d1,d2の存在確率0(d1,d2は存在するが、存在確率 1/∞=0)
>よって、d1,d2の大小比較は 確率0の中の話
無限列R^Nなので、決定番号d1,d2∈Nは否定できない
よって、d1,d2の大小比較はつねに可能(もちろん確率1)
970(2): 06/05(水)11:14 ID:X29ZhDGs(4/11) AAS
>>967
>反例があることは、お認めになられたわけですね
なんで不成立派って日本語が分からないアホばっかなんでしょうね
やれやれ
976(2): 06/05(水)15:16 ID:GTWVkqvF(3/4) AAS
>>968
(引用開始)
選択公理を前提する
この場合、無限列の尻尾同値類の代表をとることができる
したがって、どんな100列をとっても、それぞれの尻尾同値類と相違する項は有限個しかなく、無限個の項で一致する
もし、サイコロの出目を入れたとして、どの箱を選んでも、当たる確率が1/6しかないなら
少なくとも選んだ箱の5/6は、尻尾同値類と相違する有限個の項にあたる箱であることになる
それはそれで現代確率論に反すると思うが
(無限列R^Nの代わりに関数[0,1)→Rをとれば、[0,1)はNと違って一様な確率測度が存在するので
上記の不自然性を確率論で定式化でき、現代数学の系譜 雑談 ◆yH25M02vWFhPの主張との矛盾が示せる)
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.958s*