[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
846
(1): 12/29(日)23:49 ID:aRTKq65A(4/4) AAS
>>844
>>通常のC^2には、通常のR^4と微分同相か? という問いがあるだろう。多分Yesかな
>通常のC^2は通常のR^4と微分同相か? という問いがある。当然Yesだ。

ありがとうございます
お互い 通常の微分構造ならば
自明な 微分同相写像 C^2 ←→ R^4 が存在するってことか
Exotic R4ね
いまいち、イメージが掴みきれない (^^

ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%90%8C%E7%9B%B8%E5%86%99%E5%83%8F
微分同相写像
微分同相写像(びぶんどうそうしゃぞう、英: diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。
定義
2 つの多様体 M と N が与えられたとき、可微分写像 f: M → N は全単射かつ逆写像 f−1: N → M も可微分なとき微分同相(写像) (diffeomorphism) と呼ばれる。この関数が r 回連続微分可能であれば、f は Cr(級)微分同相(写像) (Cr-diffeomorphism) と呼ばれる。

2 つの多様体 M と N が微分同相 (diffeomorphic) である(記号では通常 ≃)とは、M から N への微分同相写像 f が存在するということである。
1-
あと 156 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.013s