「名誉教授」のスレ2 (536レス)
1-

325
(2): 01/02(木)20:33 ID:Zl89R8aT(4/8) AAS
>>319-323
ついていけませんが、下記か ;p)

www.jstage.jst.go.jp/article/jmath/68/4/68_1461/_pdf
The Mathematical Society of Japan
J. Math. Soc. Japan Vol.68, No.4 (2016) pp.1461–1472
A proof of the Ohsawa–Takegoshi theorem with sharp estimates
By Bo Berndtsson and L´aszl´o Lempert
(Received Dec. 2, 2014) (Revised Feb. 12, 2015)
Abstract
We give a proof of the Ohsawa–Takegoshi extension theorem with sharp estimates.
The proof is based on ideas of BÃlocki to use variations of domains to simplify his proof of the Suita conjecture, and also uses positivity properties of direct image bundles

”division problem”ね
わからん 下記かな

外部リンク:arxiv.org
[Submitted on 14 Dec 2022 (v1), last revised 31 Jan 2024 (this version, v3)]
A degeneration approach to Skoda's Division Theorem
Roberto Albesiano
We prove a Skoda-type division theorem via a degeneration argument. The proof is inspired by B. Berndtsson and L. Lempert's approach to the L2 extension theorem and is based on positivity of direct image bundles. The same tools are then used to slightly simplify and extend the proof of the L2 extension theorem given by Berndtsson and Lempert.

外部リンク:www.fields.utoronto.ca
(講義の動画がある)
A degeneration approach to Skoda's L2 division theorem
Speaker:
Roberto Albesiano (Waterloo)
Thursday, November 7, 2024 -
Location: Fields Institute, Room 309, Stewart Library
Abstract:
A classical problem in complex geometry is to decide when a given holomorphic section is in the ideal generated by a fixed set of holomorphic sections, i.e. when it is a linear combination of the generators with holomorphic coefficients. In 1972, H. Skoda proved a theorem addressing this question and giving L2 bounds on the solution with minimal L2 norm. I will sketch a different proof of a Skoda-type theorem inspired by a degeneration argument of B. Berndtsson and L. Lempert. In particular, we will see how to obtain the L2 bounds by deforming a weight on the space parametrizing all linear combinations to single out the one witnessing the ideal membership property.

外部リンク:ja.wikipedia.org
公平分割問題(英: fair division problem)
ものを公平に分割する数学の問題のこと。特定タイプの問題はケーキ切り問題(英: cake-cutting problem)と呼ぶ。第二次世界大戦下に数学者シュタインハウスによって提唱され、戦後1947年ワシントンD.C.の計量経済学の国際会議を契機に数学、経済学、情報科学の研究者に広まった。

外部リンク:en.wikipedia.org
Fair division
1-
あと 211 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.007s