[過去ログ] スレタイ 箱入り無数目を語る部屋27(あほ二人の”アナグマの姿焼き”w) (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
12: 2024/11/11(月)20:54 ID:xGTnxzX9(12/25) AAS
つづき
2chスレ:math スレ19
1)まず 選択公理の使用は、測度論の裏付けの保証がない
 よって、選択公理を使用した確率99/100に測度の裏付けがあるかどうかは
 十分注意すべきで、実際 箱入り無数には、測度の裏付けがないのです!
2)実際、このことは小学生でもわかることだが
 いま、簡単に有限n個の箱の列から始めよう(詳しくはテンプレ>>1-8ご参照)
 箱には、任意の実数r∈Rが入るが、いま簡単に有限区間 r∈[0,1]の任意実数を入れる
 箱入り無数同様にしっぽ同値類と決定番号を考える
 有限n個の箱の列が100列あり、それらの決定番号がd1,・・,d100 とする(各diで1≦di≦nである(i=1〜100))
 問題列 Si = (si1,si2,si3,・・,sin) とし
 代表列 Ri = (ri1,ri2,ri3,・・,rin) とする
 とすると、この二つの列は 決定番号の定義より di以降n番目までの箱の中の数が一致していることになる
3)箱入り無数は、決定番号がd1,・・,d100 の大小関係から
 diが最大値 dmax=max(d1,・・,d100) である確率は 1/100であるから
(いま簡便に、1≦di<nと仮定する)
 diの推定値d'iを知って、d'i+1番目以降の箱を開けて、同値類を特定し 代表列 Riのridiを知り
 それをもって 『ridi=sidi』と唱えることで、確率99/100以上で箱の数が的中できるという
(注:推定値d'i=max(d1,・・,di-1,di+1,・・,d100) つまり、di以外の最大値。詳しくは>>2ご参照)
4)問題は、区間 r∈[0,1]の任意実数を入れて
 しっぽ同値類で、n番目の箱の数の一致を得たときに
 その一つ前のn-1番目の箱の一致の確率が0になることだ
 つまり、決定番号 d1,・・,d100 の大小関係を考えるというのが、全くの架空のおとぎ話になるのです
 しっぽ n番目の箱の数の一致が分かっても、代表のn-1番目と 問題の列のn-1番目とが一致する確率0
5)さて、上記は 簡単に有限n個の箱の列で論じて
 決定番号 d1,・・,d100 の大小関係を考えるというのが、全くの架空のおとぎ話だということを立証した
6)では、n→∞のときはどうか?
 普通に考えて、上記2)〜4)の類似問題が存在する
 百歩譲っても、箱入り無数目にきちんとした
 測度論の裏付けのある数学的な議論になっていないことは
 明らかです*) ;p)
(注*:n→∞のとき、決定番号dは上限無く発散して、非正則分布を成す(>>7ご参照)
 非正則分布では平均も標準偏差も発散するので、例えば非正則分布からランダムに取った二つの数d1,d2
 の大小確率 P(d1>d2)=1/2 は、正当な確率計算になりません! これが、箱入り無数目トリックです)
よって、『箱入り無数目=与太話』に同意です!! ;p)
以上
つづく
1-
あと 990 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.012s