ガロア第一論文と乗数イデアル他関連資料スレ12 (903レス)
上下前次1-新
184(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)18:43 ID:gsEji7DN(16/21) AAS
>>183
レスありがとうございます
>>179
>>”T値列は任意でよい”は、言えない
>じゃあ Tの元すべてを含む任意のT値列でよい に訂正。
だから、その主張のためには 可算選択公理(それを使う可算整列(可能)定理)が必要です
つまり、可算整列ができれば、自然数Nとの 全単射(一対応)の存在が言えます
繰り返すが、下記 ”可算集合の 定義:
可算集合とは N と濃度が等しい集合のことである[1]。
すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう[2][3]。”
省20
上下前次1-新書関写板覧索設栞歴
あと 719 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.013s