[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (601レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
386
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/18(土)10:38 ID:yCcyDMub(3/12) AAS
つづき

>集合2^Xの選択公理を用いて、Xの濃度の部分的な値のみを用いている。
>では、最初からXの濃度で済ますことが出来るかと言えば、おそらく無理。

そこ、おサルさん>>7-10の勘違いでしょうね ;p)
 >>292の 定理 選択公理⇒整列定理 証明 で
『空でない集合Xの任意の空でない部分集合Yをその元∃y∈Yに対応させる写像f(Y)=yの存在が選択公理により保証される』
と書いたでしょ、おかしな事を書いている・・w ;p)
後で、ほじくらせて貰いますよ、乞うご期待 (^^

(参考)
外部リンク:ja.wikipedia.org
従属選択公理
他の公理との関連
従属選択公理は可算選択公理を導き、それより真に強い公理である。[4][5]
従属選択公理の一般化としてさらに長い超限列の生成を認めるものを考えることができる。認める長さを際限なくした場合、それは完全な選択公理と同値になる。

>>154より
alg-d.com/math/ac/countable_union.html
可算和定理 壱大整域
命題「可算個の可算集合の和集合は可算集合」を可算和定理という.可算和定理は選択公理が無ければ証明できない.
証明 M を ZFC+GCH の可算推移的モデルとする.以下を満たす関数 p 全体がなす集合を P とする.以下略

(いつもお世話になっている尾畑先生)
外部リンク:www.math.is.tohoku.ac.jp
東北大 尾畑研
外部リンク[pdf]:www.math.is.tohoku.ac.jp
「第11章 選択公理」p164 の定理11.7 (可算和定理)
(選択公理なしでは証明できない)

 >>84より
archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf
Comment.Math.Univ.Carolin. 38,3(1997)545–552 545
Choice principles in elementary topology and analysis Horst Herrlich
1. In the realm of the reals
We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles.
Theorem 1.1 ([15], [29], [30]). Equivalent are:
1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,
2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x,
4. each subspace of R is separable,
5. R is a Lindel¨ of space,
6. Q is a Lindel¨ of space,
9. the Axiom of Choice for countable collections of subsets of R.
There exist models of ZF that violate the above conditions ([17], [18]).
(引用終り)
以上
1-
あと 215 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.009s