[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ12 http://rio2016.5ch.net/test/read.cgi/math/1735693028/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
558: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/01/24(金) 07:59:06.85 ID:U1RMCmJs >>557 > 逆に上限がない場合、それは集合でない、と言えればいいんじゃね? 同意です その筋は、ツォルンの補題の証明に書いてあった 『この列は本当に長い、添え字の範囲は単なる自然数ではなく、全ての順序数を動く。実は P と比較しても長すぎる。順序数の全体は真クラスを成すほど大きすぎて、普通の集合より大きくなる。そして、この長さにより集合 P の元を使い尽くすことで矛盾を得る。』 とか。(まだ、分ってないので、ツッコミなしね) (参考) ja.wikipedia.org/wiki/%E3%83%84%E3%82%A9%E3%83%AB%E3%83%B3%E3%81%AE%E8%A3%9C%E9%A1%8C ツォルンの補題(英: Zorn's lemma)またはクラトフスキ・ツォルンの補題 証明の概略 選択公理を仮定したツォルンの補題の証明を概略する。補題が成り立たないと仮定する。このとき半順序集合 P を、全ての鎖が上界を持つにもかかわらず、どの元もそれより大きな元を持つように取れる。 関数 b を実際に定義するには選択公理を使う必要がある。 この関数 b を使うことで、P の元の列 a0 < a1 < a2 < a3 < ... を定めることができる。この列は本当に長い、添え字の範囲は単なる自然数ではなく、全ての順序数を動く。実は P と比較しても長すぎる。順序数の全体は真クラスを成すほど大きすぎて、普通の集合より大きくなる。そして、この長さにより集合 P の元を使い尽くすことで矛盾を得る。 aiは次の超限帰納法で定義する。 略す (引用終り) > それ、論点先取 > 問われてるのは、まさにある集合の濃度を持つかどうかだから そうかも いま、基礎論の教科書を書いているとする そうすると、整列可能定理の証明前に、任意集合Aが なんらかの濃度を持つという 集合の濃度の章(or 節)を、すでに書いているかどうか(書けるかどうか) だね >>556 >「ZFで実数は存在しない」 ・ZFで、有理数のコーシー列の収束が言えて それらの集合の存在が言える ・それらの集合をRと名付ける では、集合Rの性質はどうか? ・>>547にあるように、ZF+可算選択公理と、下記がEquivalent ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ”5. R is a Lindel¨ of space,”(リンデレーエフ空間になる) ・ここから先、つまりリンデレーエフ空間より先 デデキントやカントールが成したような 実数の公理を満たすところまで進むには、 可算選択公理とのEquivalentを破る 可算選択公理の上位の選択公理(従属選択公理DC や フルパワー選択公理AC)が必要■ http://rio2016.5ch.net/test/read.cgi/math/1735693028/558
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 444 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s