[‰ß‹ŽÛ¸Þ] ƒKƒƒA‘æˆê˜_•¶‚Æ攃CƒfƒAƒ‹‘¼ŠÖ˜AŽ‘—¿ƒXƒŒ12 (1002Ú½)
㉺‘OŽŸ1-V
‚±‚̽گÄނ͉ߋŽÛ¸Þ‘qŒÉ‚ÉŠi”[‚³‚ê‚Ä‚¢‚Ü‚·¡
ŽŸ½ÚŒŸõ —ðí¨ŽŸ½Ú žxí¨ŽŸ½Ú ‰ß‹ŽÛ¸ÞÒÆ°
648(1): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 01/26(“ú)19:56 ID:57hfZFiX(12/17) AAS
hƒŒöŠJˆŒY ‘±‚„
iw ZFã‚ÅŽÀ”‚Í ‚Ç‚±‚Ü‚Å’è‹`‰Â”\‚È‚Ì‚©Hx‚ÉŒü‚¯‚Ä ‚Æ
@ (‚ ‚Ù“ñl‚ÌhƒAƒiƒOƒ}‚ÌŽpÄ‚«") ‚ÉŒü‚¯‚Ä‚—‚— G‚j rio2016.5ch.net/test/read.cgi/math/1736907570/h
>>646
>‚»‚Ì‚Ü‚ñ‚Ü‚¾‚¯‚ÇH@‰½‚ª•ª‚©‚ç‚È‚¢‚ÆH
‚Ü‚
‚»‚¤‚â‚Á‚Ä“¦‚°‚é‚Ì‚ªŒ«–¾‚¾‚Ë‚—‚— G‚j
>>647
>>‚±‚±‚ÅAJech, Thomas ‚ÌH•v‚̓¿‚Æ‚¢‚¤‡˜”‚ð ‘I‘ðŠÖ” f ‚É‘g‚Ýž‚ñ‚¾‚±‚Æ‚É‚ ‚é‚æ
>‘I‘ðŠÖ”‚Ì’è‹`ˆæ‚Í2^A-{}A’lˆæ‚ÍA‚Å‚ ‚Á‚ÄA‚Ç‚±‚É‚à‡˜”‚Í–³‚¢‚ñ‚¾‚ªAu‡˜”‚ð‘I‘ðŠÖ”‚É‘g‚Ýž‚Þv‚Á‚ĉ½H
>‰½‚ð‚Ç‚¤Š¨ˆá‚¢‚µ‚½‚ÌH
‚Ó‚Á‚ÓA‚Ù‚Á‚Ù
Jech, Thomas ‰º‹L‚¾‚æ‚—‚—‚— G‚j
hWe let for everv ƒ¿
aƒ¿=f(A-{aƒÌFƒÌ<ƒ¿})
if A-{aƒÌFƒÌ<ƒ¿} is nonempt.h
‚¾‚æ
•S‰ñ‰¹“Ç‚µ‚Ä‚Ë‚—‚—‚— G‚j
‘I‘ðŠÖ”f‚Ì ’è‹`ˆæ‚ð
W‡‘°P(A)-ƒ³ ‘S‘Ì‚ÉL‚°‚é•K—v«‚àA
•K‘R«‚à‚È‚¢‚Å‚µ‚åII‚—‚—‚— G‚j
@>>630‚æ‚è Ä“x“]‹L
T Jech ’˜ · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics)
Thomas Jech‚Ì Ø–¾
P48
Theorem 5.1 (Zermelofs Well-Ordering Theorem)
@Every set can be well-orderd.
ProofF
Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence iaƒ¿: ƒ¿ < ƒÆ) that enumerates A.
That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.
We let for everv ƒ¿
aƒ¿=f(A-{aƒÌFƒÌ<ƒ¿})
if A-{aƒÌFƒÌ<ƒ¿} is nonempt.
Let ƒÆ be the least ordinal such that A = {ƒ¿ƒÌ: ƒÌ < ƒÆ}.
Clearly,iaƒ¿Fƒ¿< ƒÆ) enume
㉺‘OŽŸ1-V‘ŠÖŽÊ”——õÝžx—ð
‚ ‚Æ 354 Ú½‚ ‚è‚Ü‚·
½Úî•ñ ÔÚ½’Šo ‰æ‘œÚ½’Šo —ð‚Ì–¢“Ç½Ú AA»ÑȲÙ
‚Ê‚±‚ÌŽè ‚Ê‚±TOP 0.013s