[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
778
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/29(水)14:53 ID:s7oLTcE3(1/5) AAS
>>764-770
>「Aから一つずつ Aの要素を取り出して」のところ
>ここで、Aが無限集合なら「Aの空でない部分集合からその要素への選択関数」が必要

選択関数と 普通の関数の区別分かっている?

en.wikipedia.org/wiki/Axiom_of_choice
Axiom of choice
Axiom — For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set.
Formally, this may be expressed as follows:
∀X[Φ not∈ X⟹∃f:X→⋃A∈X A ∀A∈X(f(A)∈A) ]

ここは式が複雑なので原文を見るのが良いが、”f(A)∈A”が一番の要点、つまり 集合族の全てのAに対して f(A)=a ∈A が成立しているということ
省32
779: 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/29(水)14:59 ID:s7oLTcE3(2/5) AAS
>>778 タイポ訂正

f(A) が、選択関数で fが選択関数だ
 ↓
f(A) の fが選択関数だ
かな
783
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/29(水)15:30 ID:s7oLTcE3(3/5) AAS
>>773
ご苦労さんw
なんか、大学初年生に諭している気分だなw ;p)

1)証明は、君が独り言ちたように、一つではない
 ”Aが無限集合なら「Aの空でない部分集合からその要素への選択関数」が必要”>>766
 って それ あったかな?w
2)いや、「Aの空でない部分集合」を考えるのは良いよ
 そして、個人として
 「Aの空でない部分集合からその要素への選択関数」を考えるのも君の勝手だ
3)だが、”Aが無限集合なら「Aの空でない部分集合からその要素への選択関数」が必要”
省4
784
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/29(水)15:35 ID:s7oLTcE3(4/5) AAS
”<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
  (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”
< あほ二人は、選択公理−選択関数が 全く分かっていない>

血の巡りの悪い人がいるね

>>781
>>{A,A-{a0},A-{a0,a1},A-{a0,a1,a2},・・,A-{aξ:ξ<α},・・} で、左記の集合は Sの部分集合
>>(明らかに、集合Aと同じ濃度)
>>だから、Sの部分集合の形成には、選択関数は不要
>大間違い。
省7
792
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/29(水)18:13 ID:s7oLTcE3(5/5) AAS
>>778 補足
(引用開始)
集合族 A-{aξ:ξ<α} ∈S で
A-{aξ:ξ<α} を 下記に展開すると
{A,A-{a0},A-{a0,a1},A-{a0,a1,a2},・・,A-{aξ:ξ<α},・・} で、左記の集合は Sの部分集合
(明らかに、集合Aと同じ濃度)
だから、Sの部分集合の形成には、選択関数は不要(置換公理が使える)
(引用終り)

<補足>
1)かように、Aのべき集合全体(空集合抜き)の選択関数は不要
省26
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s