[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ12 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
143(5): 01/11(土)21:47 ID:7/7JENEr(4/5) AAS
>>113
>しかし、可算整列可能定理(=可算選択公理)を否定すると、有限になるので
これが雑談の根本的な誤解。
整列可能定理と選択公理の関係から、両者に「可算」を付けても同じだろうと
連想したのだろうが、証明を読めば事情はまったく異なる。
可算選択公理は可算個の集合族についての言明で、それら集合族の和集合が
可算集合とは限らないから、可算集合の整列可能性(これは自明)から
可算選択公理は従わない。
145(2): 01/12(日)06:38 ID:By1jwgYu(1/5) AAS
>>143
>可算集合の整列可能性(これは自明)
そうだね
一般に、順序数と同濃度な集合は当然整列可能である
そして、整列可能定理というのは何をいってるのかといえば
任意の集合は、必ず同濃度の順序数を持つ、ということである
146(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)08:34 ID:gsEji7DN(1/21) AAS
>>142-144
>整列可能定理と選択公理の関係から、両者に「可算」を付けても同じだろうと
>連想したのだろうが、証明を読めば事情はまったく異なる。
やれやれ
証明が読めてない人は、だれでしょか? ;p)
下記に、整列可能定理→選択公理 の証明を、貼ります!
英語版が分りにくいので、中国版とイタリア版 を追加した
百回音読してね
(参考)
en.wikipedia.org/wiki/Well-ordering_theorem
省12
154(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)09:38 ID:gsEji7DN(4/21) AAS
>>143
>可算選択公理は可算個の集合族についての言明で、それら集合族の和集合が
>可算集合とは限らないから、可算集合の整列可能性(これは自明)から
>可算選択公理は従わない。
さて、もどると
そもそも、選択公理は、整列可能定理を導くために考えられた
即ち、例えば 非可算の実数Rを 整列可能とするための公理であった
その類で、可算選択公理は、可算集合に対し 整列可能定理を導くとして
可算集合に対して 整列可能定理を考えると、可算集合の可算和は可算であるから
可算集合の族に対しては、いえるかも・・、おっと、壱大整域さん 可算和定理
省15
155(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/12(日)09:49 ID:gsEji7DN(5/21) AAS
>>143
>可算選択公理は可算個の集合族についての言明で、それら集合族の和集合が
>可算集合とは限らないから、可算集合の整列可能性(これは自明)から
>可算選択公理は従わない。
さて、”可算集合の整列可能性(これは自明)”について
これ、下記 整列集合→ Well-order → Well-ordering principle と辿ると
”the set of natural numbers”の ” Well-ordering principle ”と混同してない?
確かに、下記に 整列原理の英文証明があるけど、あくまで 自然数N のことでしょ? ;p)
『可算集合の整列可能性(これは自明)』は、見つからないよ
(参考)
省16
385(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 01/18(土)10:36 ID:yCcyDMub(2/12) AAS
AA省
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s