[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
730: 132人目の素数さん [] 2025/02/11(火) 21:24:38.13 ID:SQ07GpKQ >クソ爺は直接面白さを示さずもったいぶった物言いするから嫌 できるだけ実体験に基づいて 直接的な言い方をしたつもりだったが http://rio2016.5ch.net/test/read.cgi/math/1738367013/730
731: 132人目の素数さん [sage] 2025/02/11(火) 22:05:09.41 ID:gdFxETz7 >>727 オイラーの公式と交流の電気数学だけでなく 複利計算もやっておいてほしい。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/731
732: 132人目の素数さん [] 2025/02/11(火) 22:05:39.29 ID:SQ07GpKQ >>724 こういう書き方をされたら 「ご苦労様」と言われてしまうのは無理もない。 π²の無理性の証明が誰によるかの記述も怪しい。 ハーディー・ライトの本ではもっとすっきりした 書き方をしている。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/732
733: 132人目の素数さん [] 2025/02/11(火) 22:13:19.58 ID:SQ07GpKQ >>724 こんなものをよく読んだね http://rio2016.5ch.net/test/read.cgi/math/1738367013/733
734: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 23:09:47.96 ID:zr+dFWV7 >>699 >箱入り無数目のロジックに穴がないことも >納得した。 おお恐れながら 箱入り無数目のロジックに穴がないとしても rio2016.5ch.net/test/read.cgi/math/1736907570/ 1列の場合に矛盾ありです つまり 1列の出題 s = (s1,s2,s3 ,・・,sn-1,sn,sn+1,・・) ∈R^N を考える いま しっぽ同値類の代表 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) ∈R^N であったとして この場合、sn-1≠s'n-1 として、n以降は一致していて 決定番号d=n です いま、回答者のAさんが、ある大きな有限の数 D をとって d < D と出来れば , D 以降の箱 sD,sD+1,sD+2,・・の箱を開けて 出題のしっぽから 同値類を特定して、その代表列 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) があって sD-1の未開の箱の数は、定義より d ≦ D-1 が成り立っているので 代表のD-1の数が、未開の箱の数 sD-1 と一定している と宣言すれば、Aさんは勝てる そして、もし 常に ある大きな数 D をとって d < D と出来るならば、回答者のAさんは、100%必勝です だが、これは変です その解明として、数列を形式的冪級数τ(X)と考えるて τ(x) = s1+s2x+s3x^2・・+sn-1x^n-2+snx^n-1+sn+1x^n+・・ として 上記同様に考えると、代表 τ'(x) = s'1+s'2x+s'3x^2・・+s'n-1x^n-2+snx^n-1+sn+1x^n+・・ として 差を取ると 決定番号d=n より上の係数は消えて τ(x) -τ'(x) =s1-s'1+(s2-s'2)x+(s3-s'3)x^2・・+(sn-1-s'n-1)x^n-2 :=f(x) (多項式) と 係数 (sn-1-s'n-1) より小さい部分が残り n-2次多項式に なる しっぽ同値類とは、形式的冪級数環R[[x]]/R[x] (R[x]は多項式環) という商集合で しっぽ同値類の代表とは、f(x)∈R[x]、τ(x) =τ'(x)+f(x) ∈R[[x]] です 多項式環R[x]は、任意の自然数より大きい次元の部分空間を持つ無限次元線形空間 (>>419 都築より) ですから、いま あえて未定義の ランダム*)という言葉を使うと ランダムに選ぶ R[x]の元は(前記の意味で)無限次ですので ”回答者のAさんが、ある大きな有限の数 D をとって d < D と出来る”が不成立です(τ(x) が わかって意図すれば可能です) ( *)”ランダム”を、選択公理に お任せ と考えても良いでしょう) 追伸 いま 100列で考えて、99列から ある大きな有限の数 D を決める 1列が未開で残る。そうすると、上記と同じ状態になります 箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している そう仮定すれば、ロジックに穴がないかも知れないが 未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです http://rio2016.5ch.net/test/read.cgi/math/1738367013/734
735: 132人目の素数さん [] 2025/02/11(火) 23:23:49.67 ID:SQ07GpKQ それはさておき もっと楽しめる数学を探そう http://rio2016.5ch.net/test/read.cgi/math/1738367013/735
736: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 23:27:40.41 ID:zr+dFWV7 >>724 > https://manabitimes.jp/math/2697 ご苦労さまです それ >>722 https://en.wikipedia.org/wiki/Proof_that_%CF%80_is_irrational Proof that π is irrational にあるよ Niven, Ivan (1947)だね Niven's proof This proof uses the characterization of π as the smallest positive zero of the sine function.[9] Suppose that π is rational, i.e. π=a/b for some integers a and b which may be taken without loss of generality to both be positive. Given any positive integer n, we define the polynomial function: f(x)=x^{n}(a-bx)^{n}/{n!} and, for each x∈R let F(x)=f(x)-f''(x)+f^4(x)+・・・ +(-1)^nf^2n(x). Claim 1: F(0)+F(π)} is an integer. 以下略す References 9. Niven, Ivan (1947), "A simple proof that π is irrational" (PDF), Bulletin of the American Mathematical Society, vol. 53, no. 6, p. 509, doi:10.1090/s0002-9904-1947-08821-2 http://rio2016.5ch.net/test/read.cgi/math/1738367013/736
737: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/12(水) 00:03:34.89 ID:rx78Rip+ >>734 タイポ訂正 その解明として、数列を形式的冪級数τ(X)と考えるて ↓ その解明として、数列を形式的冪級数τ(X)と考えて >>628 戻る >0のところは尖っていて正解。これは尖点と呼ばれる大事な点。 >>653より https://www.nara-wu.ac.jp/omi/oka_symposium/11/shiga.pdf Oka Symposium講演 超幾何的K3 modular函数 志賀弘典(千葉大学理学研究科) Dec. 16, 2012奈良女子大学、revised. Jan.18,2013 ここの P116 Fig1.1 とその関連説明が 詳しい さらに P120から 基本領域の説明がある ”2つの円弧三角形F1,F2に二分して考える”とあるのは、無限遠点を考えているからでしょうね 次のページで”i∞”を明記してあるね >>622 で https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC%E7%BE%A4 モジュラー群 で 『基本領域を構成する方法は多数あるが、すべてに共通なことは、領域 略す は、垂直線 Re(z) = 1/2 と Re(z) = −1/2 と円 |z| = 1 により囲まれていることであり、双曲三角形である。』 ここも、ご注目ですね http://rio2016.5ch.net/test/read.cgi/math/1738367013/737
738: 132人目の素数さん [] 2025/02/12(水) 01:14:54.68 ID:gaOrjQxS >>734 >1列の場合に矛盾ありです 君、馬鹿なの? 出題列を複数列に並べる戦略なんだから、そもそも「1列の場合」が無い http://rio2016.5ch.net/test/read.cgi/math/1738367013/738
739: 132人目の素数さん [] 2025/02/12(水) 01:27:36.12 ID:gaOrjQxS >>734 >いま 100列で考えて、99列から ある大きな有限の数 D を決める ある大きな有限の数ではなく、99列の決定番号の最大値な。 君、字が読めないの? >1列が未開で残る。そうすると、上記と同じ状態になります ならない。 なぜなら100列のうち単独最大決定番号の列はたかだか1列だから。 そのため、いずれか1列をランダム選択したとき、単独最大決定番号の列を選ぶ確率は1/100以下。そのときだけ負けるから勝つ確率は99/100以上。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/739
740: 132人目の素数さん [] 2025/02/12(水) 01:27:47.62 ID:gaOrjQxS >箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している そんな仮定はしていない。君、幻覚でも見えるの? >そう仮定すれば、ロジックに穴がないかも知れないが そんな仮定はしていないがロジックに穴は無い。 >未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです ぜんぜんダメ。ゼロ点。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/740
741: 132人目の素数さん [] 2025/02/12(水) 01:31:38.27 ID:gaOrjQxS >>735 それ(>>734)はさておかず間違いだと言ってやれよ 己に媚び売る者の間違いは見て見ぬふり? あんたそれでも学者? http://rio2016.5ch.net/test/read.cgi/math/1738367013/741
742: 132人目の素数さん [] 2025/02/12(水) 01:33:38.39 ID:gaOrjQxS >>737 形式的べき級数を持ち出すこと自体ナンセンスだから誤記訂正不要 http://rio2016.5ch.net/test/read.cgi/math/1738367013/742
743: 132人目の素数さん [] 2025/02/12(水) 01:58:41.71 ID:gaOrjQxS >>734 >箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している 決定番号が異なる場合 「P(d1>d2)=1/2」なる仮定をしているというのは大きな誤解。 こんな仮定無しにランダムの定義から 「d1,d2のいずれかをランダム選択した方をa1、他方をa2と書いたとき、P(a1>a2)=1/2」 が言える。これが箱入り無数目の確率。 人の話を聞けないおサルさんは10年経っても理解できない。ヒトになれない哀れな畜生。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/743
744: 132人目の素数さん [] 2025/02/12(水) 02:09:33.51 ID:gaOrjQxS おサルさんによると {・・{{{}}}・・}_ωとは ある場合は{{}} ある場合は{{{}}} ある場合は{{{{}}}} ・・・ とのこと 哀れな素人によると 0.999・・・とは ある場合は0.9 ある場合は0.99 ある場合は0.999 ・・・ とのこと 思考がまったく同じで草 http://rio2016.5ch.net/test/read.cgi/math/1738367013/744
745: 132人目の素数さん [] 2025/02/12(水) 02:13:27.79 ID:gaOrjQxS ちなみに哀れな素人は例の本の改訂増補版を出している 性懲りの無さもまったく同じw http://rio2016.5ch.net/test/read.cgi/math/1738367013/745
746: 132人目の素数さん [] 2025/02/12(水) 04:20:26.67 ID:GYn8T4oZ >>735 数学は多様 何を楽しいと感じるかも人それぞれ 自分だけの趣味を他人に強制するな クソ爺 http://rio2016.5ch.net/test/read.cgi/math/1738367013/746
747: 132人目の素数さん [] 2025/02/12(水) 04:26:03.78 ID:GYn8T4oZ >>734 > 箱入り無数目のロジックに穴がないとしても > rio2016.5ch.net/test/read.cgi/math/1736907570/ > 1列の場合に矛盾ありです >>738 > 出題列を複数列に並べる戦略なんだから、 > そもそも「1列の場合」が無い その通り 1列では 選んだ列以外の列がないから答えが知りようがない n>=2以上の場合、確率は1-1/nだが、 n=1とした場合、形式的には1-1/1=0となる そして、もし当たらないというなら、まったく矛盾ない 矛盾するというなら、0より大きな確率であたるということ 当たるの?◆yH25M02vWFhP 君 http://rio2016.5ch.net/test/read.cgi/math/1738367013/747
748: 132人目の素数さん [] 2025/02/12(水) 04:27:53.87 ID:GYn8T4oZ >>732 クソ爺のいいかたはいつもそう 自分が面白さを直接示すことなく みんな他人に丸投げしてもったいぶる それじゃ学生はみんな嫌がる こいつ学生に嫌われてたんだろうな http://rio2016.5ch.net/test/read.cgi/math/1738367013/748
749: 132人目の素数さん [] 2025/02/12(水) 04:29:08.99 ID:GYn8T4oZ >>736 何がどう面白いのか理解もせずに丸コピペしてドヤ顔する馬鹿 おまえ数学無理だからあきらめて、碁でも打ってろよ http://rio2016.5ch.net/test/read.cgi/math/1738367013/749
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 253 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.145s*