ガロア第一論文と乗数イデアル他関連資料スレ13 (825レス)
上下前次1-新
282(3): 02/06(木)16:05 ID:jBYaMD3j(9/14) AAS
従って、逆離散フーリエ変換から
γ(0,3)=1/3(γ-log(1-ω)-log(1-ω^2))
γ(1,3)=1/3(γ-ω^2log(1-ω)-ωlog(1-ω^2))
γ(2,3)=1/3(γ-ωlog(1-ω)-ω^2log(1-ω^2))
が得られる。ベーカーの定理の系1より
外部リンク:ja.wikipedia.org
-log(1-ω)-log(1-ω^2), -ω^2log(1-ω)-ωlog(1-ω^2), -ωlog(1-ω)-ω^2log(1-ω^2)
はいずれも超越数であることが分かるので
γ(0,3), γ(1,3),γ(2,3)の中で、代数的数は高々1個しかない
(少なくとも2個は超越数である)ことが言える。
283(3): 02/06(木)16:06 ID:jBYaMD3j(10/14) AAS
以上の議論において、真に強力なのはベーカーの定理である。
その証明には精密な数論的議論を要する。
未解決問題であるγについての知見を得ることは
そのさらに向こう側にある事象であると言える。
上下前次1-新書関写板覧索設栞歴
あと 542 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.006s