ガロア第一論文と乗数イデアル他関連資料スレ13 (982レス)
上下前次1-新
79(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/03(月)11:25 ID:Kqr4zqHs(1/4) AAS
>>64-65
ID:bvvTKD+8 は、御大か
巡回ご苦労様です
なるほど
ご指摘の思い当たる点を 自分で赤ペンすると
(引用開始)
>>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で
冪集合 P(X)={ {a,b,c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d}
{a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d},
{a},{b},{c,},{d},
∅ }
これで 包含関係 で 順序が入る
{a,b,c,d}⊃{a,b,d}⊃{a,b}⊃{a}⊃∅
で、整列順序の極大元になる
この前後の差分 c>d>b>a Xので整列になる
この極大は、幾通りもある(どれを選ぶも任意!!です)
(引用終り)
1)ここの素朴(ナイーヴ)な議論が、まずいってことですね
2)つまり、無限集合では
ヒルベルトホテルのパラドックスが起きる ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
例えば、順序数ω から 一つ減らしても ωのままです (順序数の演算ご参照 ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 )
3)この素朴な議論を、ZFC内で 正当化したのが >>14の alg-d 壱大整域氏 の証明で
そこで 必要なのが 1)選択公理(及びそれと同値のZorn補題) 2)順序数 との対応付け
ということですね
これによって 当初の素朴(ナイーヴ)な議論のスジが、ほぼZFC内の議論に変換できている
4)ここで、注目すべきは 冪集合 P(X)には、⊃ による 順序構造とか
X={a,b,c,d}を頂点にして 最底辺が 空集合∅ という 階層構造とかがある (一方 X自身には そういう構造の仮定はない)
ここらを潜在的な構造として うまく ZFC内で 正当化しているのが、 >>14の alg-d 壱大整域氏 の証明です
なお >>37の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明 も 同様です
上下前次1-新書関写板覧索設栞歴
あと 903 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.009s