[過去ログ] 場の量子論 Part9 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
455: 2013/11/12(火)19:27 ID:??? AAS
微小な質点を3つ 等間隔r 離して直線に並べる
端を中心に3つの質点を回転させたときと中央の質点を中心に回転させたときの区別はできない
流れる時間が遅れるので次の比が成り立ってしまう
1:√(1-(rω/C)^2):√(1-4(rω/C)^2)=√(1-(rω/C)^2):1:√(1-(rω/C)^2)
質量周囲では流れる時間が遅くなるがこれは質量が周囲の空間を回転させるため
静止した質量でも周囲の座標自体が動いているため運動しているとみなせる
√(1-2GM/(RC^2))=√(1-(v/c)^2)
2GM/(RC^2)=(v/c)^2
√(2GM/R)=V この速度は当然質量MからR離れた点で回転軌道を描くための速度(mV^2/R=GMm/R^2 √(2GM/R)=V)
つまり他の質量にもっとも接近した質量は光速で動いているとみなせる。
M'=M/√(1-(rω/C)^2) M''=M/√(1-4(rω/C)^2)
√(1-2GM’/(rC^2))*√(1-2GM’’/(2rC^2)):√(1-(rω/C)^2)*√(1-2GM/(rC^2))*√(1-2GM’’/(rC^2)):√(1-4(rω/C)^2)*√(1-2GM/(2rC^2))*√(1-2GM’/(rC^2))=
√(1-(rω/C)^2)*√(1-2GM/(rC^2))*√(1-2GM'/(2rC^2)):√(1-2GM'/(rC^2))*√(1-2GM'/(rC^2)):√(1-(rω/C)^2)*√(1-2GM/(rC^2))*√(1-2GM'/(2rC^2))
上下前次1-新書関写板覧索設栞歴
あと 547 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.008s