[過去ログ] 場の量子論 Part9 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
543: 2013/11/28(木)00:24 ID:??? AAS
質量MがΔmの質量を電磁波に変えて全方位に均等に放射しても重心は変わらない
ただし特定方向に重点的に放射した際は重心がずれる
{ -(M-Δm)X+Δm(Ct/2-X) }/M=0 X=(Δm/M)*Ct/2 (t秒間電磁波を一方向に照射したときの重心の移動距離) 
つまりv=(Δm/M)*C/2で移動する
質量が互いに向けて電磁波を打ち合うので重力が起きるとする
MとMをR離した距離におくと√(2GM/R)の速度で互いに接近しようとする
(Δm/M)*C/2=√(2GM/R)
Δm=√(8GM^3/(RC^2))の質量を電磁波に変えて互いに交換し合っている
質量Aと質量BをR離した距離におくと√(2GB/R)と√(2GA/R)の速度で互いに接近しようとする
(Δa/A)*C/2=√(2GB/R) (Δb/B)*C/2=√(2GA/R)
省7
544: 2013/11/28(木)07:04 ID:??? AAS
>>538
訂正 ローレンツ変換がユニタリ作用素で書ける、ていう主張(要請)
545: 2013/11/29(金)00:31 ID:??? AAS
電気量qの電荷と電気量q'の電荷をR離しておく
q/√(1+q'/(2πεR) ) ≒q-qq'/(4πεR) q'/√(1+q/(2πεR) ) ≒q'-qq'/(4πεR)
q>0 q'>0のとき 2電荷を近づけるほど電荷内部の時間は加速し
q>0 q'<0のとき 2電荷を近づけるほど電荷内部の時間は減速する
qの電荷を帯びたm/2の質量  qの電荷を帯びたm/2の質量がクーロン力で反発しながら重力で引き寄せられ
間の距離を変えない状態で光速で回転しているとき
q^2/(4πεR^2)=Gmm/(4R^2)
2q=m√(4πεG)
質量mはm√(4πεG)の電荷を帯びている
546: 2013/11/29(金)14:03 ID:??? AAS
∫[(2GM/C^2)→∞] E/{1-√(2GM/(C^2R))} - E/{1+√(2GM/(C^2R))} dR
√(2GM/(C^2R))=x
-1/(2R)*√(2GM/(C^2R)) dR=dx
-x^3c^2/(4GM) dR=dx
-8GME/C^2*∫[1→0] 1/[{1-x^2}*x^2 ]dx =MC^2
-8GME/C^2*∫[1→0] [(1/2)*{1/(1+x)+1/(1-x)} +1/x^2 ]dx =MC^2
{(1/2)*log{(1+x)/(1-x)}-1/x}=1/0-1+log√(2/0)
8GME/C^2*=MC^2
E=C^4/{[1/0-1+log√(2/0)]*8G}
547: 2013/11/29(金)16:57 ID:??? AAS
質量Mは静止状態で毎秒Eのエネルギーをとりこみ同時に放射している MC^2+E−E
取り込まれるエネルギーがEから(E+hν/2)になり放射されるエネルギーがEから(E-hν/2)になると
MC^2+(E+hν/2)−(E-hν/2)=MC^2+hν つまりMにhνを照射したように見える
√[(E+hν/2)*(E-hν/2)]/E=√(1-(hν/(2E))^2)
MC^2/√(1-(hν/(2E))^2)=MC^2+MC^2/(8E^2)*hν
E=√M/(2√2)*C
548: 2013/11/29(金)21:40 ID:??? AAS
∫[(2GM/C^2)→∞] 4πR^2*[E/{1-√(2GM/(C^2R))} - E/{1+√(2GM/(C^2R))}] dR
√(2GM/(C^2R))=x
-1/(2R)*√(2GM/(C^2R)) dR=dx
-x^3c^2/(4GM) dR=dx
-32πGME/C^2*∫[1→0] (C^2/(2GM))^2*1/[{1-x^2}*x^7 ]dx =MC^2
-8πEC^2/(GM)*{-1/(6x^6)-1/(4x^4)-1/(2x^2)-(1/2)log(x^2-1)+logx } =MC^2
8GME/C^2*=MC^2
E=C^4/{[1/0-1+log√(2/0)]*8G}
549: 2013/11/29(金)21:58 ID:??? AAS
電磁波登場、真性
2chスレ:sci
550: 2013/11/30(土)01:10 ID:??? AAS
質量半径がvで変化すると質量内部に流れる時間が1-(v/c)になる
半径が光速で膨張すると0の時間が流れ 半径が光速で縮小すると2の時間が流れる
質量0の質量に流れる時間は2 質量0以上の質量に流れている時間は1
質量外では空間は直進し質量内では回転するためこの時間比になる
電場Eと磁場Hが静止した座標で回転すると質量になるとする
シュバルツシルト半径の円上に静電場エネルギーと静磁場エネルギーが質量エネルギー分存在している
2π*2GM/C^2*(1/2)*(μE^2+εH^2)=MC^2
μE^2=εH^2
μE^2=C^4/(4πG) εH^2=C^4/(4πG)
E=C^2/√(4πGε) H=C^2/√(4πGμ)
省1
551: 2013/11/30(土)01:34 ID:??? AAS
(1/2)*(μE^2+εH^2)=(1/2)*(√μ*E+i√ε*H)(√μ*E-i√ε*H)
√(μE^2+εH^2)*e^(iφ) φ=arctan[(√ε*H)/(√μ*E)]
√(μE^2+εH^2)*e^(-iφ) φ=arctan[-(√ε*H)/(√μ*E)]
hν=E*i^cosθ+H*i^sinθ
電磁波は電場と磁場が虚数性を互いに交換し合いながら光速で進むもの
552: 2013/11/30(土)23:10 ID:??? AAS
電流Iが直進するとIの周囲に右回りにBが発生
磁束Bが直進するとBの周囲に左回りにEが発生
電場Eが直進すると電荷Qが直進しているとみなせ電流I'とみなせる
I'が直進するとI'の周囲に右回りにB'が発生
B'が直進するとB'の周囲に左回りにEが発生

B=μIsinωt/(2πR)
φ=μIsinωt/(2πR)*S
∫Eds=-μωIcosωt/(2πR)*S
E=-μωIcosωt/(2πR)
-εμωIcosωt/(2πR)=Q
省11
553: 2013/12/01(日)03:22 ID:??? AAS
ω=√(4πGM)
2πν=√(4πGM)
ν=√(GM/π)
hν=h√(GM/[π*√(1-(v/c)^2))を常に全方位に照射している
電子は電磁波の円だとすると運動するとシュバルツシルト半径が増加し電磁波円の半径が増加するため
そのさいに電磁波が磁場と電場にわかれて周囲に回転しながら飛び出してくる
554: 2013/12/01(日)23:26 ID:WX4wSthZ(1) AAS
電磁気もわからんのに電磁波が好き
555: 2013/12/02(月)09:59 ID:??? AAS
ライダーはリー群、微分形式が出てくるな、困ったもんだ
556: 2013/12/02(月)18:03 ID:FHksdr5Z(1) AAS
正電荷qと正電荷qを2Rはなしておき中央に正電荷Δqを置く
中央の正電荷を片側にxずらすと中央に戻すようにF=kΔqq*4Rx/(R^2-x^2)^2がはたらく
このとき正電荷q二つが消え中央に負電荷-q'が生成したとすればkΔqq'/x^2=kΔqq*4Rx/(R^2-x^2)^2 q'=-4qRx^3/(R^2-x^2)^2(これはΔqが0に漸近しても変わらない
lim[x→0] -4qRx^3/(R^2-x^2)^2=-4q*(x/R)^3 q'= -4q*(x/R)^3
q'= -4q*(4πx^3/3)/(4πR^3/3)
同極の二つの電荷の距離をたもって移動させると中央に逆の電荷が生じる
557: 2013/12/04(水)01:09 ID:??? AAS
電子が電磁波となりわずかに移動しまた電子に戻る 電子が移動したように見える
完全に空間に対して静止した際電子内部に流れる時間を1とすれば
電子が電磁波に代わる際 周囲の時間を1+i倍し 電磁波が電子に代わる際 周囲の時間を1-i倍する
つまり運動する電子は周囲の時間を2倍に加速させる
完全に静止した状態の電子質量エネルギーがE 運動後再び静止した電子質量エネルギーがE' 
E/(1+i)=hν hν/(1-i)=E' E'=(1/2)*E    電子が運動して静止すると質量が半分になる
558
(3): 2013/12/04(水)11:36 ID:??? AAS
ラグランジアンの中の場2次の項が質量項としての意味を持つとされていますが、
4次や6次の項は何故、質量項としての意味を持たないのですか?
ポテンシャルカーブの底からズレるためにエネルギーを必要とすると言うことが、
即ち素粒子が質量を持つと言うことでるのなtら、場の4次や6次の項でも同じことに
なると思えるのですが。
559
(1): 2013/12/04(水)11:45 ID:yLdBLixM(1/4) AAS
それ相互作用に効くだけだろ
560: 2013/12/04(水)12:03 ID:??? AAS
>>558
これでも読んで
外部リンク[pdf]:osksn2.hep.sci.osaka-u.ac.jp
561
(1): 2013/12/04(水)12:08 ID:yLdBLixM(2/4) AAS
その資料、質問と関係ないじゃねーかw
562
(1): 2013/12/04(水)12:22 ID:??? AAS
>>559

真空状態からズた状態に励起するために必要なエネルギーは2次の項の分だけでなく、
4次、6次の項に対応する分も必要なはずですが、その合計がそのまま場の静止エネルギーE
になるなら、励起された場はE=mc^2の関係で決まる静止質量mを持つように思えるのですが。
1-
あと 440 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.062s*