[過去ログ] ワンピース強さ議論と雑談スレ706 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
84
(1): (スププ Sd33-pRzV) 2018/05/30(水)08:55 ID:4EAYZphLd(2/4) AAS
AA省
62: (CA 0Heb-w7C0) 2018/05/30(水)05:45 ID:jQOTlaYcH(2/5) AAS
>>83-86
確認初等代において最高次係数 1の二項式の平方公{\displaystyle(x+p)^{2}=x^{2}+2px+p^{2}}

は単純な構造をしている。つまり完全平方式において、一次の係数は p の二倍で定数項(英語版は p の自乗になっている。

任意の最高次係数 1 の二次多項式 {\textstyle x^{2}+bx+c} と最初の二項が一致する完全平方式を 
{\textstyle (x+{\tfrac {1}{2}}b)^{2}=x^{2}+bx+{\tfrac {1}{4}}b^{2}} によって与えることができる。これら二つは定数項のみが異なるのであるから、
適当な定数を加えることに{\displaystyle x^{2}+bx+c=(x+{\tfrac {1}{2}}b)^{2}+k}
の形にすることができる
(なんとなれば、{\textstyle k=c-{\frac {b^{2}}{4}}} ととればよいのである)。このような変形操作を平方完成と呼ぶ。
最高次係数 1 でないとき与えられた二次式が {\textstyle ax^{2}+bx+c} の形であるときには、二次の係数
 a で式全体を括ることができて、最高次係数 1 の場合の結果を適用して平方完成ができる。そうして得られた二次式は {\displaystyle a(x-h)^{2}+k} という形
省15
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.192s*