[過去ログ] 不等式への招待 第2章 (989レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
412: 406 2005/08/30(火)06:34 AAS
>389
こんどは直交軸だけで解いてみますた... 直交変換を次のようにおく。
 a=p'X'+r'Y'+q'Z', b=q'X'+p'Y'+r'Z', c=r'X'+q'Y'+p'Z'
 ここに、p'、q'、r'は θ'^3 -θ'^2 +(1+2√7)/(27√7) =0 の3根.{ [1,1,1]軸のまわりの回転 }

・基本対称式の関係
 X',Y',Z' の基本対称式を S',T',U' とおくと、s=S', t=T'. また u+a^2・b+b^2・c+c^2・a については、
  (X'^2・Y'+Y'^2・Z'+Z'^2・X') の係数 (p'^3+q'^3+r'^3 +6p'q'r') +(p'q'^2+q'r'^2+r'p'^2)と
  (X'・Y'^2+Y'・Z'^2+Z'・X'^2) の係数 (p'^2q'+q'^2r'+r'^2p') +3(p'q'^2+q'r'^2+r'p'^2)
 が等しいとおくと、4(p'^2q'+q'^2r'+r'^2p') + 5(p'q'^2+q'r'^2+r'p'^2) = (p'+q'+q')^3, 係数は (4-√7)/9.
 p'q'r'+p'^2・q'+q'^2・r'+r'^2・p'= (1+2√7)/27, (p'^3+q'^3+r'^3 +3p'q'r') + 6(p'^2q'+q'^2r'+r'^2p') = (11+4√7)/9 より、
 u+a^2・b+b^2・c+c^2・a = ((1+2√7)/27)(S'^3 -3S'T'+3U') -((4-√7)/9)(S'T'-3U') +(√7)U'
 = ((1+2√7)/27)S'^3 -{(√7 -1)/3}S'T' +(√7)U' = (1/7)(U +S'^3).

 これを(1)に代入すると
 (左辺)-(右辺) = (S'^2 -2T')^2 +3T'^2 -(3/7)S'(U+S'^3)
  = (1/7){(7T'-2S'^2)^2 -3S'U}
  = (1/2)[X^2(Y'-Z')^2 +Y^2(Z'-X')^2 +Z^2(X'-Y')^2]≧0.
  ここで、X=(X'-S/3)√7 +S/3, Y=(Y'-S/3)√7 +S/3, Z=(Z'-S/3)√7 +S/3.
U = XYZ = (7√7)U'-(7/3)(√7 -1)S'T' +{2(7√7-10)/27}S'^3.
  >406 と同じことだが。
1-
あと 577 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.011s