くだらねぇ問題はここへ書け (836レス)
1-

581: 2022/08/29(月)12:19 ID:cg/tjCFi(2/3) AAS
【定理】
A, B, I, J, K, Lをそれぞれ1, 3, 1, 2, 1, 1変数関数として、特にI(x)=x, K(J(x, y))=x, L(J(x, y))=yを満たすとする。
2変数関数FがA, Bからrecursionによって定義されているとき
FはA, B, I, J, K, Lから合成とiteration を有限回適用して定義できる。
(証明)
前提より、次の2式でFが定義されている。
F (x, 0) =A(x)
F (x, S (n)) =B(x, n, F(x, y, n))
いまから
F (x, n) = F’ (x, n)を満たすF’ をA, B, I, J, K, Lから合成とiterationによって定義する。
まず、α, βという関数をA, B, I, J, K, Lから合成によって定義する。
α (x) = J (I(x), A (x))
β (x, y)=J (K (L (J (x, y))), B (K (L (J (x, y))), K (J (x, y)), L (L (J (x, y)))))
次にα, βからiterationによってGを定義する。
G (x, 0)=α (x)
G (x, S(n))=β (n, G(x, n))
するとG (x, n) = J (x, F (x, n))であることがnについての帰納法で示される。
最後にGとLを合成してF’を得る。
F’ (x, n) = L (G (x, n))
するとF (x, n) = F’ (x, n)となっている。
F’ (x, n)
= L (G (x, n))
= L (J (x, F (x, n)))
= F (x, n)
A, B, I, J, K, LからF’を作るのに合成とmixed iteration with one parameter しか使わなかったので題意は示された。
(証明終わり)
1-
あと 255 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.473s*