くだらねぇ問題はここへ書け (836レス)
前次1-
抽出解除 レス栞

300
(3): 2018/02/19(月)17:30 ID:CMze8r9t(2/3) AAS
>>299
つづき

1+1/(n-1)}^(n-1)<(1+1/n)^n ←?個々の計算結果がなぜそうなるのか?途中計算を詳しくお願いします。

n=1であるときは、与えられた指揮は2となるから、この極限値が2よりも大きいことh言うまでもないが、
これが4よりも小さいことを次に証明する。

まず、nを偶数とするとn=2*mとおいて、

(1+1/n)^n=(1+1/(2*m))^(2*m)={(2*m+1)/(2*m)}^(2*m)={((2*m+1)/(2*m))^m}^2
省11
301: 2018/02/19(月)17:31 ID:CMze8r9t(3/3) AAS
>>300
つづき

 また、n が整数ではなくて、n<k<n+1 という数 k である場合には 1/(n+1)<1/k,1/n という不等式が成立するから、
したがってまた、次の不等式が成立する。

{1+1/(n+1)}^n<{1+1/(n+1)}^k,(1+1/k)^k<(1+1/n)^k<(1+1/n)^(n+1)

ところが、両端の式はこれを書き換えて、

(1+1/n)^(n+1)=(1+1/n)^n*(1+1/n) , {1+1/(n+1)}^n={1+1/(n+1)}^(n+1)*{1-1/(n+2)} ←?この計算を詳しく教えて
ください
省1
302
(1): 2018/02/19(月)23:19 ID:m16ZPD9z(1/2) AAS
>>299-300
まず証明したいことはこれ
|(1+1/n)^nはnを増すにしたがって大きくなる
これは、任意のn>2について
{1+1/(n-1)}^(n-1)<(1+1/n)^n←?
であることを言いたい。そのために
{1+1/(n-1)}^(n-1)-(1+1/n)^n<0←?'を証明する
?'の左辺
={1+1/(n-1)}^(n-1)-{1+1/(n-1)}^n+{1+1/(n-1)}^n-(1+1/n)^n
=(1-{1+1/(n-1)}){1+1/(n-1)}^(n-1)+{1+1/(n-1)}^n-(1+1/n)^n
省9
303
(2): 2018/02/19(月)23:31 ID:m16ZPD9z(2/2) AAS
>>300
>ところが、(?ここからが分かりません、何でそれぞれの右辺がこうなるのか・・・)
>(2*m+1)/2*m<(2*m)/(2*m-1) , (2*m+1)/(2*m)<(2*m-1)/(2*m-2) , (2*m+1)/(2*m)<(2*m-2)/(2*m-3) ,

(2m+1)/(2m)=(2m)/(2m)+1/(2m)=1+{1/(2m)}です。
同様に、(2m-(n-1))/(2m-n)=((2m-n)+1)/(2m-n)=1+{1/(2m-n)}となります。
(2m)>(2m-n)>0であれば、{1/(2m)}<{1/(2m-n)}です。
両辺に1を加えて1+{1/(2m)}<1+{1/(2m-n)}よって、
0<n<2mであるnについて、(2m+1)/(2m)<(2m-(n-1))/(2m-n)となります。

>(1+1/n)^n<{(2*m+1)/(m+1)}^2 , すなわち、(1+1/n)^n<{2-1/(m-1)}^2<4  ←?どうゆう計算したのか?

(2m+1)/(m+1)=(2(m+1)-1)/(m+1)=2(m+1)/(m+1)-1/(m+1)=2-1/(m+1)<2-1/(m-1)です。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.403s*