[過去ログ]
現代数学の系譜11 ガロア理論を読む27 [無断転載禁止]©2ch.net (517レス)
現代数学の系譜11 ガロア理論を読む27 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1483075581/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
4: 現代数学の系譜11 ガロア理論を読む [sage] 2016/12/30(金) 14:28:14.06 ID:zFouRTR2 (現代数学の系譜11 ガロア理論を読む18)>>614 再録 数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/〜 の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/〜 の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、前スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. 現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ. だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう. 確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」 (現代数学の系譜11 ガロア理論を読む18)>>176 より 再録 数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. いったい無限を扱うには, (1)無限を直接扱う, (2)有限の極限として間接に扱う, 二つの方針が可能である. 確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ. (独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.) しかし,素朴に,無限族を直接扱えないのか? 扱えるとすると私たちの戦略は頓挫してしまう. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか−−他の箱から情報は一切もらえないのだから. 勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる. ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」 http://rio2016.5ch.net/test/read.cgi/math/1483075581/4
183: 132人目の素数さん [] 2017/01/01(日) 22:01:19.06 ID:55xmNTx6 スレ主の主張>>40をコピペ ////////////////////// >>34-37 にお答えしよう >>37に引用頂いている通りだが 時枝>>4-5に従って 無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう 1.時枝>>2により s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N これを、一度有限に落とす。数列の長さL=nを考えよう 2.s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^nとなる 「ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版)」は、そのままでいい 3.「任意の実数列S に対し,同値な(同じファイパーの)代表r= r(s)」を、r =(=r(s))= (r1,r2,r3 ,・・・,r n-1, r n)と表現しよう 同値の定義より、sn=r n だ。そして 「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」も、そのままでいい。とすると、決定番号d = d(s)=nとなることに注意をうながしておく 4.で、s = (s1,s2,s3 ,・・・,sn-1,r n) と書くことができる 今、 sn-1 ≠ r n-1と仮定しよう 5.そうすると、明らかにd = d(s) = nだ 6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう Δr= s - r =(s1,s2,s3 ,・・・,sn-1,r n) - (r1,r2,r3 ,・・・,r n-1, r n)= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 ,0 ) となり、なんの不都合もない Δr= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 )として、数列の長さLを、n-1と考えることも可能 7.ここで、極限を考える。n→∞だ。d = d(s) = nだった lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ http://rio2016.5ch.net/test/read.cgi/math/1483075581/183
262: 現代数学の系譜11 ガロア理論を読む [sage] 2017/01/02(月) 13:15:32.06 ID:MUXssChK >>242 関連 https://en.wikipedia.org/wiki/Landau_damping (抜粋) In physics, Landau damping, named after its discoverer,[1] the eminent Soviet physicist Lev Landau (1908?68), is the effect of damping (exponential decrease as a function of time) of longitudinal space charge waves in plasma or a similar environment.[2] This phenomenon prevents an instability from developing, and creates a region of stability in the parameter space. Landau damping can be manipulated exactly in numerical simulations such as particle-in-cell simulation.[5] It was proved to exist experimentally by Malmberg and Wharton in 1964,[6] almost two decades after its prediction by Landau in 1946.[7] Mathematical theory: the Cauchy problem for perturbative solutions The rigorous mathematical theory is based on solving the Cauchy problem for the evolution equation (here the partial differential Vlasov?Poisson equation) and proving estimates on the solution. First a rather complete linearized mathematical theory has been developed since Landau.[14] In a recent paper[17] the initial data issue is solved and Landau damping is mathematically established for the first time for the non-linear Vlasov equation. It is proved that solutions starting in some neighborhood (for the analytic or Gevrey topology) of a linearly stable homogeneous stationary solution are (orbitally) stable for all times and are damped globally in time. The damping phenomenon is reinterpreted in terms of transfer of regularity of f {\displaystyle f} f as a function of x {\displaystyle x} x and v {\displaystyle v} v, respectively, rather than exchanges of energy. 17 Mouhot, C., and Villani, C. "On Landau damping", Acta Math. 207, 1 (2011), 29?201 (quoted for the Fields Medal awarded to Cedric Villani in 2010) http://rio2016.5ch.net/test/read.cgi/math/1483075581/262
382: 現代数学の系譜11 ガロア理論を読む [sage] 2017/01/07(土) 21:52:03.06 ID:3+lYjsf1 >>381 関連 熱力学は好きでね、久保 亮五先生の『大学演習 熱学・統計力学』を買ったけど、むずかった。ほとんど書棚の肥やしだった https://ja.wikipedia.org/wiki/%E4%B9%85%E4%BF%9D%E4%BA%AE%E4%BA%94 久保 亮五(くぼ りょうご、1920年2月15日 - 1995年3月31日)は、日本の物理学者。東京大学、京都大学、慶應義塾大学で教授、パリ大学、シカゴ大学、ペンシルベニア大学、ニューヨーク州立大学で客員教授を務めた。 統計物理学、物性物理学の分野で国際的に知られた[1]。 特に線形応答理論の構築に貢献し、彼の提案した理論は「久保理論」の名でも呼ばれている。 1997年に生前の業績を記念して井上科学振興財団が久保亮五記念賞を創設した。 編著 『大学演習 熱学・統計力学』 参考文献 「久保亮五」(上山明博 著『ニッポン天才伝』朝日選書,2007年) https://en.wikipedia.org/wiki/Ryogo_Kubo Ryogo Kubo In the early 1950s, Kubo transformed research into the linear response properties of near-equilibrium condensed-matter systems, in particular the understanding of electron transport and conductivity, through the Kubo formalism, a Green's function approach to linear response theory for quantum systems. In 1977 Ryogo Kubo was awarded the Boltzmann Medal for his contributions to the theory of non-equilibrium statistical mechanics, and to the theory of fluctuation phenomena. He is cited particularly for his work in the establishment of the basic relations between transport coefficients and equilibrium time correlation functions: relations with which his name is generally associated. http://rio2016.5ch.net/test/read.cgi/math/1483075581/382
487: 現代数学の系譜11 ガロア理論を読む [sage] 2017/01/14(土) 19:04:10.06 ID:co7dEEx8 AIと数学 http://www.j-cast.com/2017/01/06287546.html?p=all プロ棋士はもはや囲碁AIに勝てない 進化型アルファ碁「Master」の衝撃 : J-CASTニュース: 2017/1/ 6 (抜粋) 「囲碁AI(人工知能)はプロ棋士の能力を遥かに超えてしまった。さらに進化が進み追いつくことはできないだろう」。囲碁AIにくわしいプロ棋士の大橋拓文六段はJ-CASTニュースのインタビューにそう語った。 「Master」と名乗るアカウントがインターネット囲碁サイト「東洋囲碁」で確認されたのは2016年12月29日。 あまりの強さから大人気マンガ「ヒカルの碁」の登場人物・サイ(藤原佐為)ではないのか、などと取り沙汰されたが、グーグルは日本時間の17年1月5日、自社が開発した囲碁AIだと公表した。既に世界のトッププロ相手に60連勝していて、かなう棋士はもういないのだという。 16年末にネットに忽然と現れる グーグルが囲碁AIに関する論文を公表していたことから、それを参考に「アルファ碁」に追いつこうと、新たな囲碁AI開発ラッシュが始まった。囲碁対戦サイトでは現在、中国の「刑天」など複数の囲碁AIが対戦をしていて、勝率は9割というものも出ている。 そして、16年末に忽然と現れたのが「Master」だった。17年1月1日からは中国発の囲碁サイト「野狐囲碁」に出没し、誰も敵わず勝率は100%だった。 つづく http://rio2016.5ch.net/test/read.cgi/math/1483075581/487
507: 現代数学の系譜11 ガロア理論を読む [sage] 2017/01/15(日) 09:23:05.06 ID:3YFHDxHU つづき さて、各論 Q1.>有限数列の長さkの分布は決定番号dの分布と同じ「裾が超重い分布」になる A1「裾が超重い分布」という用語を使って頂けるのはありがたい。Tさんと違うね が、きちんと定義していないが、有限数列の長さkの分布となると、変数kの定義域は有限だから、正確には「裾が超重い分布」には含まれない。 変数kの定義域が有限であれば、Hart氏GAME2では確率分布が決められる。有限なら既存の確率論の範囲内 そして、変数kの定義域が、{1,∞)のとき、裾の重い分布以上に裾が重くなるので、「裾が超重い分布」と称した (Hart氏GAME2や、時枝>>2-3では、変数kの定義域が有限、つまり、有限数列であっても、決定番号の確率分布は考えられない。強いて言えば、max(k)の場合確率1で、他は0だ。 ) Q2.>有限の極限を介して無限を扱うのだから2つのステップに分けると A2 (2) のステップは不要だろ。(1) で、a1, a2, ... , ak, (空), (空), ... , (空), ... で、akを数列のしっぽと定義して、有限数列の長さkの同値類分類をすることだけで完結できる それでこそ、”有限の極限を介して無限を扱う”を貫徹していることになる Q3.>「裾が超重い分布」だから有限数列の長さkを増やしても決定番号dの手前まで増やせるかが分からない この場合もスレ主の言う確率の評価はできないでしょう? A3 A2をご参照。 Q4.>数列と代表元の差を考えないと極限は考えられない A4 A2をご参照。 Q5.>代表元の独立性は確かめられていないから出題された無限数列の決定番号より後ろの項の独立性も確かめられていない A5 はっきり言って、”独立性”を誤解していると思う。”独立性”の定義を調べてください 追伸 High level people は、早く 28へどうぞ http://rio2016.5ch.net/test/read.cgi/math/1483075581/507
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.023s