[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
121
(1): 2017/06/22(木)20:00 ID:WgJfdE7K(1/3) AAS
>>98-99
> ある決定番号nの数列が存在するとして、かならずその後者 決定番号n+1の数列が構成可能です
> 従って、決定番号は任意の自然数を取ることができます!

無限数列の場合は以下のようになるから数当て戦略が不成立であることは言えないですよ
決定番号が自然数 : 決定番号より後ろには可算無限個の項が存在する

数当て戦略を成立させないために決定番号より後ろに可算無限個の項が存在する状態をなくしたいからスレ主は
> 箱が「可算無限個」だから、”L→∞を考えろ” (>>80)

極限を考えるということは無限数列のある項より後ろに存在する可算無限個の項をまとめて扱うための条件を考えることになって

> 「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」
だから決定番号の極限を求めるための可算無限個の項を扱うための条件としては以下の2通りしかない
省13
122
(1): 2017/06/22(木)21:07 ID:WgJfdE7K(2/3) AAS
>>92
数学的帰納法(ペアノの公理)で項を順番に増やして無限数列を作るということに関してです

有限小数の小数表示から無限数列a1, a2, ... , an, 0, 0, ... を構成した有限小数バージョンの数当てを行った場合の話でも
スレ主は今と同じペアノの公理を持ち出してきて数当て戦略は正しくないと言っていたことが前提としてあって

たとえば全部の項が0の無限数列を代表元(a1=0, an=a(n+1)=0)としたときに
無理数の小数表示を数学的帰納法(ペアノの公理)で全て順々に求めていけばスレ主が書いているような
決定番号モドキが1ずつ増えていく状況をつくることができる
(もちろん属する類が異なるので正しく決定番号を求めているわけではなくゲームのルールを逸脱しているが
0が入っている箱を当てることができないことにはなる)

2chスレ:math
省5
130
(2): 2017/06/22(木)23:12 ID:WgJfdE7K(3/3) AAS
>>125
> 無限に続ければ、どんな決定番号nにも、無限の箱は存在しますよ。これ、当たり前ですよね

> 決定番号nであれ、かならずその後者n+1があり、またその後者n+1+1があり・・と無限に続きます。
これはNの真部分集合{1, 2, ... , n}, {1, 2, ... , n+1}, {1, 2, ... , n+1+1}, ... を順々に考えているわけで
もし「後者」がなくなればそのときはじめてNの真部分集合でなくて自然数全体の集合Nになったことが言えるわけです
だから「後者」がなくなることを示さなければ可算無限になることは言えないですよ
可算無限というのは自然数全体の集合Nの濃度だというのは分かりますよね?

> またその後者n+1+1があり・・と無限に続きます
だと「後者」が尽きることはないということです
当たり前ですよね
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s