[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
234
(2): 2017/07/23(日)09:39 ID:p7xlQ3BC(1/2) AAS
>>232
さすがなり。 >>230の元になった問題は以下。
外部リンク:math.stackexchange.com

 a,b,c>0、a+b+c+abc=4 に対して、
 (ab+bc+ca)*{ a/sqrt(b+c) + b/sqrt(c+a) + c/sqrt(a+b) }^2 ≧ (1/2)*(4-abc)^3

条件 a+b+c+abc=4 は、右辺を難しそうに見せるだけのノイズと見て削除して、

 a,b,c>0 に対して、
 (ab+bc+ca)*{ a/sqrt(b+c) + b/sqrt(c+a) + c/sqrt(a+b) }^2 ≧ (1/2)*(a+b+c)^3

これは一般化されたヘルダーの不等式から出てくるが、他に易しい証明ないかな?
この右辺を弄って >>230 を得る。
235
(1): 2017/07/23(日)09:50 ID:p7xlQ3BC(2/2) AAS
>>234
>  a,b,c>0 に対して、
>  (ab+bc+ca)*{ a/sqrt(b+c) + b/sqrt(c+a) + c/sqrt(a+b) }^2 ≧ (1/2)*(a+b+c)^3
>
> これは一般化されたヘルダーの不等式から出てくるが、

について、蛇足。

{a(b+c)+b(c+a)+c(a+b)}^(1/3)*{ a/sqrt(b+c) + b/sqrt(c+a) + c/sqrt(a+b) }^(2/3) ≧ a+b+c
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.558s*