[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
598
(2): 2017/08/18(金)12:33 ID:WHydeLcz(2/4) AAS
>>597
ちがった。最後は
(s^3t^2-4st^3+9t^2u) - (t^2-3su)u
608
(2): 2017/08/19(土)13:16 ID:HQ7H9Ohy(2/3) AAS
>>597 >>598

s^3 -4st +9u = a(a-b)(a-c)+ b(b-c)(b-a)+ c(c-a)(c-b),
tt-3su = bc(a-b)(a-c)+ ca(b-c)(b-a)+ ab(c-a)(c-b),
より
(s^3 -4st +9u)tt - (tt-3su)u = P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b),
ここに
P=a(tt-bbcc),Q=b(tt-ccaa),R=c(tt-aabb),
P,Q,R≧0 かつ(P,Q,R)(a,b,c)は同順序なので Schurの拡張で成立..
628
(4): 2017/08/19(土)22:28 ID:HQ7H9Ohy(3/3) AAS
>>597 >>598

a,b,c が△の辺長の場合は Ravi変換で簡単でござるよ。 >>594
b+c-a=A, c+a-b=B, a+b-c=C, a+b+c=A+B+C.

HM = 3abc/(ab+bc+ca)
=(3/2)(A+B)(B+C)(C+A)/{(A+B+C)^2 +(AB+BC+CA)}
≧(4/3)(A+B+C)(AB+BC+CA)/{(4/3)(A+B+C)^2}
=(AB+BC+CA)/(A+B+C)
≧(4√3)S/(a+b+c)
=(2√3)r,

したがって a,b,c>0 で成立するかがミソのようでござる… >>608
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.235s*