[過去ログ] 不等式への招待 第8章 [無断転載禁止]©2ch.net (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
652
(3): 2017/08/20(日)18:47 ID:XEX21MRP(4/6) AAS
>>628
ようやく理解。ところでRavi変換は (b+c-a)/2 = x、… なのでは?

基本対称式を使って、力任せに証明してみた。
a, b, c の基本対称式を s, t, u とおくと、
HM^2 - (2√3*r)^2 = 3{3s(st-u)^2 - 4u(s^2+t)^2}/{s(s^2+t)^2}
分子 = u(s^2t+3su-4t^2) + s^2(st^2-4s^2u+3tu) + 2s^2t(st-9u) ≧0

週末が始まったと思ったら、もう終わっていたでござる… ('A`)
653: 2017/08/20(日)18:48 ID:XEX21MRP(5/6) AAS
>>652
正確には、分子じゃなくて、分子の中括弧の中身。
654
(1): 2017/08/20(日)18:56 ID:XEX21MRP(6/6) AAS
>>652
何度もすまぬ。
Ravi変換 (b+c-a)/2 = x、…をしてから、x, y, z の基本対称式 s, t, u を使ったのでござった。
665
(1): 2017/08/20(日)22:50 ID:mA3fdDEU(1/2) AAS
>>609
〔Schur 不等式の拡張〕
P,Q,R≧0 かつ(P,Q,R)(a,b,c)が同順または逆順ならば
 P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)≧ 0.

(略証)
bはa,cの中間にあるとしてよい。
 (a-b)(b-c)≧ 0
題意より、P,Q,R≧0 かつ QはP,Rの中間にあるから、
 P-Q+R ≧0
これらより、
省10
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s