[過去ログ] 分からない問題はここに書いてね433 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
886(1): 2017/09/09(土)21:14 ID:B7DvEcr+(8/9) AAS
log(1 + t) = t + o(t) (t → 0)
より、
log(1 + 2*x/n + |z|^2/n^2)
=
log(1 + 2*x/n + o(1/n))
=
2*x/n + o(1/n) + o(2*x/n + o(1/n)) (n → ∞)
f(n) := o(2*x/n + o(1/n))
とおく。
f(n) / {2*x/n + o(1/n)} → 0 (n → ∞)
x ≠ 0 のとき、
f(n) / (1/n) = [{2*x/n + o(1/n)} / (1/n)] * f(n) / {2*x/n + o(1/n)} → 2*x * 0 = 0 (n → ∞)
x = 0 のとき、
f(n) / (1/n) = {o(1/n) / (1/n)} * f(n) / o(1/n) → 0 * 0 = 0 (n → ∞)
よって、
f(n) = o(1/n)
以上より、
log(1 + 2*x/n + |z|^2/n^2) = 2*x/n + o(1/n) + o(1/n) = 2*x/n + o(1/n)
上下前次1-新書関写板覧索設栞歴
あと 116 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.007s