[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
376(1): 2021/02/11(木)21:33 ID:xRkvTpwx(20/21) AAS
>>375
つづき
Examples and theorems
The most basic example of a fundamental group is π1(Spec k), the fundamental group of a field k. Essentially by definition, the fundamental group of k can be shown to be isomorphic to the absolute Galois group Gal (ksep / k). More precisely, the choice of a geometric point of Spec (k) is equivalent to giving a separably closed extension field K, and the fundamental group with respect to that base point identifies with the Galois group Gal (K / k). This interpretation of the Galois group is known as Grothendieck's Galois theory.
More generally, for any geometrically connected variety X over a field k (i.e., X is such that Xsep := X ×k ksep is connected) there is an exact sequence of profinite groups
1 → π1(Xsep, x) → π1(X, x) → Gal(ksep / k) → 1.
The pro-etale fundamental group
Bhatt & Scholze (2015, §7) have introduced a variant of the etale fundamental group called the pro-etale fundamental group. It is constructed by considering, instead of finite etale covers, maps which are both etale and satisfy the valuative criterion of properness. For geometrically unibranch schemes (e.g., normal schemes), the two approaches agree, but in general the pro-etale fundamental group is a finer invariant: its profinite completion is the etale fundamental group.
省4
上下前次1-新書関写板覧索設栞歴
あと 626 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.716s*