[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
388
(2): 2021/02/12(金)08:00 ID:ON+uWjNc(1/2) AAS
>>371
>数体Fの上に一点抜き楕円曲線X(=双曲的な曲線)が与えてあるとする。
>すると、エタール基本群をとることによって自然な完全列ができる:
> 1→ΔX→ΠXp→Gp→1

なるほど
IUTでは、一点抜き楕円曲線X(=双曲的な曲線)とか、”n一点抜き”などが基本なのか!

>>375-376
>エタール基本群 Etale fundamental group
>More generally, for any geometrically connected variety X over a field k (i.e., X is such that Xsep := X ×k ksep is connected) there is an exact sequence of profinite groups
> 1 → π1(Xsep, x) → π1(X, x) → Gal(ksep / k) → 1.
>Bhatt & Scholze (2015, §7) have introduced a variant of the etale fundamental group called the pro-etale fundamental group. It is constructed by considering, instead of finite etale covers, maps which are both etale and satisfy the valuative criterion of properness.
>Tamagawa, Akio (1997), "The Grothendieck conjecture for affine curves", Compositio Mathematica, 109 (2): 135?194, doi:10.1023/A:1000114400142, MR 1478817

エタール基本群で
類似の完全列があるね
Scholze氏、Tamagawa氏も、ご登場か

>>377
>「 多様体 X の同型類についてのどのくらいの情報が、エタール基本群(英語版)(etale fundamental group)の知識には含まれているのであろうか?[2] 」
>具体例は、多様体が射影的と同様にアフィン的な場合である。有限生成な体 K (その上の素体)上に定義された滑らかで既約な場合を想定し、与えられた双曲線 C に対し、つまり、種数 g の射影代数曲線内の n 個の点の補空間に対し、
> 2 - 2g - n < 0
>とする。グロタンディークは、射有限群である C の代数的基本群 G が C 自身を決定する(つまり G の同型類が C の同型類を決定する)と予想した。このことは望月新一により証明された[3] g = 0(射影直線)で n = 4 の場合の例が与えられ

2 - 2g - n < 0
これ、>>333 伊原先生の
「ここにXが双曲型とは,その種数をg,穴の個数をnとす
るとき2gー2+n>0が満されることです.」
と同じだね
1-
あと 614 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.009s