[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
314(4): 2021/02/09(火)11:27 ID:iaSZi6N5(2/5) AAS
>>311
ありがと
分かったよ
楕円曲線は、下記(梅村にも書いてあるが)、複素トーラス面(リーマン面)で、下記「種数 1 の閉曲面(英語版)(コンパクト二次元多様体)」
典型的には、車のゴムタイヤだ
で、「一点抜き楕円曲線」(>>307)は、穴あきタイヤだね
で、それは”閉”曲面(3次元空間を内外に分ける)ではなく、”開”(3次元空間を内外に分けない)曲面になるってこと
コンパクトではないけれが、それよりも(3次元空間の)開か閉かの問題だね
そして、穴あきタイヤは、下記の「アニュラス」に類似だ。ただ、内円が外円のどちらかの縁が、閉じられていない(縁が無い)ってことだね
(参考)
省4
315: 2021/02/09(火)11:27 ID:iaSZi6N5(3/5) AAS
>>314
つづき
外部リンク:ja.wikipedia.org
トーラス
初等幾何学におけるトーラス(英: torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。
いくつかの文脈では、二つの単位円周の直積集合 S1 × S1(に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた S1 × S1 に同相な図形の総称として用いられ、種数 1 の閉曲面(英語版)(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 R3 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 R2 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは R3 では不可能で、R4 で考える必要がある。これはクリフォードトーラス(英語版) と呼ばれる、四次元空間内の曲面を成す。
混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。
省5
316: 2021/02/09(火)11:30 ID:iaSZi6N5(4/5) AAS
>>314
タイポ訂正
コンパクトではないけれが、それよりも(3次元空間の)開か閉かの問題だね
↓
コンパクトではないが、それよりも(3次元空間の)開か閉かの問題だね
319: 2021/02/09(火)15:26 ID:hbIG3ITg(2/4) AAS
>>314
>「一点抜き楕円曲線」は、穴あきタイヤだね それは
>”閉”曲面(3次元空間を内外に分ける)ではなく、
>”開”曲面(3次元空間を内外に分けない)になる
集合(Set)A君、大丈夫かい?
閉曲面、開曲面の定義も知らないとは酷すぎる…
正しい定義は、境界のない曲面が
コンパクトなら閉曲面
そうでないなら開曲面
だぞ
省22
322(2): 2021/02/09(火)23:45 ID:2tlV096L(1) AAS
>>314
>で、「一点抜き楕円曲線」(>>307)は、穴あきタイヤだね
”1 点抜き楕円曲線”は、下記からみだろうね
なお、中村、松本は
中村博昭(阪大)、松本眞(広島大)先生だろう
1994だから、27年前
(参考:コピペままで、文字化けは面倒なのでそのまま。原文見てください)
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
1 点抜き楕円曲線に付随する Galois 表現
早大理工 角皆宏 (TSUNOGAI Hiroshi)
省28
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s