[過去ログ] 分からない問題はここに書いてね 470 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
977
(1): 2022/03/02(水)18:52 ID:JGSXTOgB(1) AAS
「星の群論序説」って占星術入門っぽくてステキ
978
(1): 2022/03/02(水)19:31 ID:zMqKu8nw(1) AAS
そもそも“教科書を読む”とは”適切な行間の巾”を感じとる作業なのだ
どんな細かい行間も許さず“自明”という言葉を使わず何もかも書き込んでいけばそりゃ間違いもなくなる
しかし無限の時間も忍耐力もない人間は多少の間違いが入り込む危険を冒してでも適切な“行間”を入れて議論をせざるを得ない
初心者のうちはなるべく詰めて細かく、しかし勘助が掴めてくるにつれ少しずつ“容易、自明”で済ましてしまう巾を広げていく
しかし自明でもなんでもない事を“自明”で済ませる事はもちろん数学ではない、それが本当に“自明”と思えるくらいに、証明を求められれば一瞬で完成させられる力をつけていく作業
しかしどの程度のことは飛ばすべきなのか、詰めて議論すべきなのか、その“間合い”をプロの数学者の文章から読み取って自分の中に積み上げていく、それが教科書を読む意味の半分はあると言っていい
このカスにはまぁ理解できんやろ
979: 2022/03/02(水)19:47 ID:Aw80Y3WG(1/2) AAS
>>977
星のうんこぅはお好きですか?
マドモアゼル愛←男性です。
興味がおありですか?
そんなロマンチックな貴方は
♓魚座かなにか?
980: 2022/03/02(水)19:52 ID:Aw80Y3WG(2/2) AAS
>>978
助けて!ォ賢者様ン!
14星座のホロスコープ、何年ググってもヒットしません!
ちょこっと作って広告料稼いでみてくれても…ばれへんか…
作ってくれよな〜頼むよ〜

そのくらいチョロィんでしたっけね、諸賢さん?
981: 2022/03/02(水)20:50 ID:lS0QnqlF(7/7) AAS
>>972
どういう状況を言わんとしているか分かれば
定義の条件がどれだけ少なくできるかとか
意味ないことも理解できると思うけどね
982
(2): 2022/03/02(水)20:58 ID:J2hRnqsB(3/3) AAS
>>975
(x-a)(x-b)(x-c)=0
x^3-(a+b+c)x^2+(ab+bc+ca)x-abc=0
x^3+ax^2+bx+c=0
係数を比較して
a=-a-b-c
b=ab+bc+ca
c=-abc
よってb=-2a-c,b=ca/(1-a-c),b=-1/a
この連立方程式が解けません
省1
983: 2022/03/03(木)02:17 ID:v0OoWvB6(1) AAS
3次方程式f(x)=0は相異なる3つの素数を解に持つ(素数は正とする)。
またxy平面において、3次関数のグラフy=f(x)は極大値と極小値をもち、いずれの極値についてもその絶対値は素数であるという。
このようなf(x)をすべて求めよ。
984: 2022/03/03(木)09:12 ID:bpLNDaPQ(1/5) AAS
群の定義は
μ:G×G→G
ι:G→G
ε:G→G
という特殊な射
それと
Δ:G→G×G(Δ(g)=(g,g))
1:G→G(1(g)=g)
という一般的な射
について
省8
985
(1): 2022/03/03(木)14:37 ID:bpLNDaPQ(2/5) AAS
>>982
c=-abc
c(1+ab)=0
c=0
a=-a-b
b=ab
b(1-a)=-2a(1-a)=0
(a,b,c)=(0,0,0)(1,-2,0)
ab=-1
(a,b)=(1,-1)(-1,1)
省5
986
(1): 2022/03/03(木)14:41 ID:bpLNDaPQ(3/5) AAS
>>982
>(x-a)(x-b)(x-c)=0
これでいいのかな?
x=a,x=b,x=cを解に持つというのはこれらが解であることの意?
それとも解のすべてがちょうどx=a,x=b,x=cであるということ?
後者の解釈で解いているけれど
前者の解釈なら
a^3+a^3+ab+c=0
b^3+ab^2+b^2+c=0
c^3+ac^2+bc+c=0
省1
987: 2022/03/03(木)14:52 ID:bpLNDaPQ(4/5) AAS
c^3+ac^2+bc+c=0
より
c=0またはc^2+ac+b+1=0
c=0なら
a(2a^2+b)=0
b^2(b+a+1)=0
a=0または2a^2+b=0
b=0またはb+a+1=0
(a,b,c)=(0,0,0)が1つ出てきて
a≠0ならb=-2a^2≠0より
省9
988: 2022/03/03(木)15:44 ID:5ZtsJXBs(1/2) AAS
>>830

G を群とする。
#G = p^n とする。
すると、 Z(G) ≠ {e} が成り立つ。

このことを使って、 G はすべての i ∈ {0, 1, …, n} に対して、位数が p^i であるような部分群を持つことを示せ。

---------------------------------------------------------------------------------

p を任意の素数とし、 #G = p^n とする。
省5
989: 2022/03/03(木)15:55 ID:5ZtsJXBs(2/2) AAS
>>830

G を群とする。
#G = p^n とする。
すると、 Z(G) ≠ {e} が成り立つ。

このことを使って、 G はすべての i ∈ {0, 1, …, n} に対して、位数が p^i であるような部分群を持つことを示せ。

---------------------------------------------------------------------------------

p を任意の素数とし、 #G = p^n とする。
省17
990: 2022/03/03(木)16:45 ID:bpLNDaPQ(5/5) AAS
>>986
a≠b≠c≠aなら
(x-a)(x-b)(x-c)となるから
>>985の考察からこうなるのは(a,b,c)=(1,-2,0)のみ
a=b=cなら
2a^3+a^2+a=0
a(2a^2+a+1)=0
より(a,b,c)=(0,0,0)のみ
あとはa,b,cのうち2つが等しい場合
a=b≠c≠0なら
省22
991: 2022/03/03(木)23:32 ID:0AeLOwoJ(1) AAS
矢野健太郎先生の「社会科学者のための基礎数学」で自習していますが、以下の証明問題がわかりません。

定理6.2 ベクトルa1,…,anが1次独立で、a1,…,an,bが1次従属ならば、bはa1,…,anの1次結合で表され、その表し方は一意的である。

定理6.3 定理6.2でb≠0ならば、a1,…,anのうち適当な一つをbで置き換えたn個のベクトルの組も1次独立である。

【問題】定理6.2 6.3 を証明せよ。

【途中までの回答】
a1,…,an,b が一次従属であるから、
x1 a1 + … + xn an + xb = 0
が全てが0でない係数について成り立つ。
このとき、x=0とすると、
x1 a1 + … + xn an = 0
省5
992: 2022/03/04(金)00:14 ID:oZAK2vMg(1) AAS
f(x)=x^3+3x^2+2x+7を割り切る2次多項式で、係数(定数項も含める)がすべて正の実数であるものは存在するか。
993: 2022/03/04(金)00:56 ID:387xtaIa(1) AAS
f(-3)=1よりx<-3に解x=αを持つ
∴残り2解の和は正
∴f(x)/(x-α)の一次の係数は負
994
(1): 2022/03/04(金)11:46 ID:fL71QJSe(1/2) AAS
定理6.2の後半
b=x1 a1 + … + xn an = y1 a1 + … + yn an とbが2通りで表せたとする。
(x1-y1) a1 + … + (xn-yn) an = 0
a1,… ,anは一次独立ゆえx1-y1 = 0,… ,xn-yn = 0
よってx1 = y1,… ,xn = yn
定理6.3の証明
b≠0なのでb = (- 1/x) (x1 a1 + … + xn an) と表したとき、、
x1,… ,xnの少なくとも1つは0でない。それをxn≠0とする。
aiをbで置き換えてz1 a1 + … + zi b + … + zn an = 0 (*)
左辺にbを代入
省5
995: 2022/03/04(金)11:48 ID:fL71QJSe(2/2) AAS
>>994
訂正:それをxn≠0とする。→ それをxi≠0とする。
996
(1): 2022/03/04(金)14:40 ID:cfsE/K61(1) AAS
任意の実数cに対して
∫[c,2c] f(x)dx = ∫[2c,4c] f(x)dx
が成り立つとき、f(x)は周期関数でないことを示せ。
1-
あと 6 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.020s