[過去ログ] 分からない問題はここに書いてね 470 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
147(3): 2022/01/09(日)23:59 ID:5G01BRcD(1) AAS
nCkが整数であることを、「組み合わせの数だから整数になる」という言い方を使わず、数式だけで説明するにはどうしたらいいですか?
163(1): 2022/01/11(火)10:07 ID:34IpToic(1/2) AAS
>>147
nCk=n(n-1)…(n-k+1)/k!
で分子は連続するk個の整数なのでkで割った余りは0,1,2,…k-1を一つずつ取る。
分子はk以上の数の積。よってiの倍数(1≦i≦k)をいずれも含みnCkは整数。
167: 2022/01/11(火)13:19 ID:YzcQsylY(1) AAS
>>147
nの階乗を素因数分解した時、素因数pの指数qは、
q = [n/p] + [n/p^2] + [n/p^3] + [n/p^4] +... = Σ[t=1,∞]([n/p^t])
で計算できます。
C[n,r]=n!/((n-r)! r!) なので、C[n,r] を素因数分解した時、素因数pの指数qは、
q = Σ[t=1,∞]([n/p^t] - [(n-r)/p^t] - [r/p^t])
で計算できますが、一般に、
[(a+b)/k] ≧ [a/k] + [b/k]
である事を考えれば、q≧0が分かる。
C[n,r]の任意の素因数について、指数が非負であることが示せるので、C[n,r]は整数だと結論できます。
169: 2022/01/13(木)21:03 ID:MQ+A5bA3(1/2) AAS
>>147
パスカルの三角形で帰納法使えばいいんじゃないかな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.027s