[過去ログ] 高校数学の質問スレ Part421 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
253
(1): 2022/09/20(火)00:19 ID:7hM170dC(3/6) AAS
3
a=2^(n-1)(2^n -1)、n>1、2^n -1は素数
ならばaは完全数であることを証明せよ。また偶数の完全数はこの形に限ることを証明せよ。
以下を参照せよ。

nの約数の和S(n)は
S(n)>2n、S(n)=2n、S(n)<2nのどれかになるが、S(n)=2nとなるとき、nを完全数という。
6の約数は1、2、3、6
28の約数は1、2、4、7、14、28
であるから完全数である。
269: 2022/09/20(火)16:53 ID:RWLKaRrV(1/4) AAS
>>253
S(a)=(1+2+…+2^(n-1))(1+(2^n-1))れ
(2^n-1)×2^n=2aよりaは完全数。

aを偶数なので
a=2^(n-1)b、n>1、bは奇数とする。
S(a)=(2^n-1)S(b)=2a=2^nb
S(b)=b+b/(2^n-1)より
b/(2^n-1)=cは整数となり、それはbの約数である。
一般に1とその数自身を除く約数を真の約数と呼ぶことにすると
S()b=1+b+「真の約数の和」でありcが真の約数とするとS(b)=b+1+cとなり矛盾。よってc=1でありbは素数である。
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.651s*