[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
843(2): 12/29(日)22:05 ID:aRTKq65A(2/4) AAS
>>841-842
>Q. Exotic R^4には、通常のC^2とは異なる複素構造が入る?
>それは未解決だと思う
それは、ずいぶん面白い問いだと思う
まず、Exotic R4とは?
SmallとLargeがあるらしい
そのまえに、通常のC^2には、通常のR^4と微分同相か? という問いがあるだろう。多分Yesかな
とすると、C^2にも Exoticな(通常と非微分同相な)微分可能構造が入るか? という問題設定かな? 多分Yesかな
Cをリーマン球に丸めて、C'と書く。C'^2 はどうか? 頭が働かない・・ ;p)
ところで、exotic 4-sphereについて
省24
848(1): 12/30(月)06:46 ID:KwOVbDpb(2/4) AAS
>>843
>>>Q. Exotic R^4には、通常のC^2とは異なる複素構造が入る?
>>それは未解決だと思う
>それは、ずいぶん面白い問いだと思う
数学者にとってはね
ただ大学1年の微積と線型代数でつまづいた素人の君の人生には全く無関係な問いだけどね
>まず、Exotic R4にはSmallとLargeがあるらしい
定義を書きなよ
An exotic R^4 is called small if it can be smoothly embedded as an open subset of the standard R^4.
An exotic R^4 is called large if it cannot be smoothly embedded as an open subset of the standard R^4.
省1
852(1): 12/30(月)08:01 ID:qdfGas+m(1/8) AAS
>>847-851
ID:UCW3fghKは、御大か
朝の巡回、ご苦労さまです
下記を見ると、微分同相の数学は長い歴史があるわけで
エキゾチック R4 に辿り着くまで、半世紀くらい
その間、これでフィールズ賞を取った人が何人かいる
素人がちょっと考えたくらいで想像できるものではないことが、よく分りました
”C^2にも Exoticな(通常と非微分同相な)微分可能構造が入るか?”>>843
下記+複素多様体が、必要か
エキゾチック R4が、全てC^2で実現できるとは思えないが、幾つかは実現できるかな
省17
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.577s*