ƒXƒŒƒ^ƒC ” “ü‚è–³”–Ú‚ðŒê‚é•”‰®27(‚ ‚Ù“ñl‚ÌhƒAƒiƒOƒ}‚ÌŽpÄ‚«h‚—) (672Ú½)
ƒXƒŒƒ^ƒC ” “ü‚è–³”–Ú‚ðŒê‚é•”‰®27(‚ ‚Ù“ñl‚ÌhƒAƒiƒOƒ}‚ÌŽpÄ‚«h‚—) http://rio2016.5ch.net/test/read.cgi/math/1731325608/
ã
‰º
‘O
ŽŸ
1-
V
’Êí•\Ž¦
512Ê޲ĕªŠ„
Ú½žx
496: Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP [] 2024/11/23(“y) 18:37:00.92 ID:dngn2gaF >>495 ‚Ó‚Á‚ÓA‚Ù‚Á‚Ù‚— G‚j @>>491‚æ‚èĘ^ —v‚·‚é‚ÉA hAn essential point of this proof is that it involves only a single arbitrary choice, that of R;h ihWell-ordering theoremh‚Å ’PŒêhchoiceh‚ÍAd—vƒL[ƒ[ƒh‚Å‚·j ha subset of the real numbers that is not Lebesgue measurable can be proved to exist using the axiom of choice, it is consistent that no such set is definable.[8]h iAxiom of choice Criticism and acceptancej hhBecause there is no canonical well-ordering of all sets, a construction that relies on a well-ordering may not produce a canonical resulth iAxiom of choice Criticism and acceptancej ‚— G‚j http://rio2016.5ch.net/test/read.cgi/math/1731325608/496
ã
‰º
‘O
ŽŸ
1-
V
‘
ŠÖ
ŽÊ
”Â
——
õ
Ý
žx
—ð
‚ ‚Æ 176 Ú½‚ ‚è‚Ü‚·
½Úî•ñ
ÔÚ½’Šo
‰æ‘œÚ½’Šo
—ð‚Ì–¢“ǽÚ
AA»ÑȲÙ
GoogleŒŸõ
Wikipedia
‚Ê‚±‚ÌŽè
‚Ê‚±TOP
0.009s