[過去ログ]
スレタイ 箱入り無数目を語る部屋27(あほ二人の”アナグマの姿焼き”w) (1002レス)
スレタイ 箱入り無数目を語る部屋27(あほ二人の”アナグマの姿焼き”w) http://rio2016.5ch.net/test/read.cgi/math/1731325608/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
527: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2024/11/24(日) 08:46:00.59 ID:pyyDnAPQ >>517 >fは唯一ではない(つまり一意的でない)が、 >少なくとも一つ存在するなら一つとれる(つまり一意化できる) 一意的でない vs 一意化できる 矛盾してないか? そのうえで、>>492 (en.wikipedia.org/wiki/Axiom_of_choice)より ”a subset of the real numbers that is not Lebesgue measurable can be proved to exist using the axiom of choice, it is consistent that no such set is definable.[8]” (Axiom of choice Criticism and acceptance) で 8^ Fraenkel, Abraham A.; Bar-Hillel, Yehoshua; Lévy, Azriel (1973), Foundations of set theory (2nd ed.), Amsterdam-London: North-Holland Publishing Co., pp. 69–70, ISBN 9780080887050, MR 0345816. とあって、google book へのリンク books.google.com/books?id=ah2bwOwc06MC&pg=PA69 があるよ ”it is consistent that no such set is definable.[8]” この it は、ヴィタリ集合だね ”definable.[8]”の定義が、不明だが さて 検索: Vitali set no "definable" で下記がヒットする 最後に Quora の Samuel Gomes da Silva Ph.D. の回答を貼付けておいた 一意的でない vs 一意化できる 矛盾してないか? <検索結果> 1) Canonical Vitali set Mathematics Stack Exchange math.stackexchange.com › ... このページを訳す 2013/11/23 — But it cannot have a definable Vitali set because the forcing is homogeneous, so every subset of the ground model that is definable in the ... 回答 2 件 ベストアンサー: No, there cannot be a formula that always defines a Vitali set whenever one exists. In fact ... What does Axiom of Choice know about when Creating a ... 2020年1月3日 Are sets constructed using only ZF measurable using ZFC? 2012年5月8日 Descriptive Set Theory - definable sets can be partitioned into ... 2022年10月31日 Is there a known well ordering of the reals? 2010年10月11日 math.stackexchange.com からの検索結果 Definable collections of non measurable sets of reals つづく http://rio2016.5ch.net/test/read.cgi/math/1731325608/527
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 475 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s